1,765 research outputs found

    Capture and recreation of higher order 3D sound fields via reciprocity

    Get PDF
    Presented at the 10th International Conference on Auditory Display (ICAD2004)We propose a unified and simple approach for capturing and recreating 3D sound fields by exploring the reciprocity principle that is satisfied between the two processes. Our approach makes the system easy to build, and practical. Using this approach, we can capture the 3D sound field by a spherical microphone array and recreate it using a spherical loudspeaker array, and ensure that the recreated sound field matches the recorded field up to a high order of spherical harmonics. A design example and simulation results are presented. For some regular or semi-regular microphone layouts, we design an efficient parallel implementation of the multi-directional spherical beamformer by using the rotational symmetries of the beampattern and of the spherical microphone array. This can be implemented in either software or hardware. A simple design example is presented to demonstrate the idea. It can be easily adapted for other regular or semi-regular layouts of microphones

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    A study into the design of steerable microphones arrays

    Get PDF
    Beamforming, being a multi-channel signal processing technique, can offer both spatial and temporal selective filtering. It has much more potential than single channel signal processing in various commercial applications. This thesis presents a study on steerable robust broadband beamformers together with a number of their design formulations. The design formulations allow a simple steering mechanism and yet maintain a frequency invariant property as well as achieve robustness against practical imperfectio

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    ACTIVE NOISE CONTROL USING CARBON NANOTUBE THERMOPHONES: CASE STUDY FOR AN AUTOMOTIVE HVAC APPLICATION

    Get PDF
    The goal of this project was to reduce the overall noise levels emitted by the HVAC components in a vehicle’s cabin. More specifically, the feasibility of achieving this goal using two key technologies was investigated. The first of these technologies, Active Noise Control (ANC), is a noise attenuation technique that relies on destructive interference that “cancels” unwanted noise. Typically used in situations where physical constraints prevent passive attenuation techniques from being used, ANC is known for its high size-to-effectiveness ratio. This benefit cannot be gained without a cost however; the complexity of ANC systems is significantly higher than their passive counterparts. This is due to the signal processing and actuator designs required. These actuators often take the form of moving-coil loudspeakers which, while effective, are often bulky. Because of this they are difficult to “drop in” to an existing system. This is where the second technology comes in. Carbon Nanotube (CNT) Thermophones are solid-state speakers that operate by using rapid heat fluctuations to create sound. Called the “thermoacoustic effect,” (TE) the theory of this operating principle dates to the turn of the 20th century. Useful demonstration of TE did not occur until 2008, however, when researchers first developed the first CNT thermophones. The hallmark characteristics of these transducers are their small size and flexible nature. Compared to traditional loudspeakers they have a much smaller form factor and are more versatile in terms of where they can be placed in a cramped system. The marriage of CNT transducers to ANC technology shows promise in improving the application space and ease of installation of ANC systems. Getting these two to cooperate, however, is not without challenges. A case study for this union is presented here; the application space being the ducted environment of vehicle HVAC systems

    Towards a quieter world : three-dimensional printed acoustic metamaterials for noise control

    Get PDF
    Environmental noise impacts the everyday life of millions of people and it represents a growing concern for the health of the world's population. To mitigate this impact, noise reducing materials such as foam or barriers are employed extensively with effective results. However, the efficacy of such materials is limited by the inverse relationship between the frequency of the attenuated waves and materials characteristics like thickness and density, as described by the mass-law. In order to overcome this fundamental limitation, a new challenge in acoustic engineering has emerged to design and manufacture lightweight and subwavelength materials that can break the mass-law. A potential solution to this challenge is represented by a recently discovered family of materials, called acoustic metamaterials, which show properties typically not found in nature. These materials are made of resonant building blocks that are smaller than the wavelength of the attenuated acoustic wave. When these building blocks are combined to form a metamaterial, they lead to the formation of band gaps - near their resonance frequency - that deeply attenuate the incident sound. The manufacturing of noise reducing acoustic metamaterials could also largely benefit from recent advances in three-dimensional printing technologies, as they offer the possibility to fabricate abstract shapes and to carefully choose some properties of the printed materials. The work presented in this thesis describes the modelling, fabrication and measurement of noise reducing acoustic metamaterials based on Helmholtz resonators, thin plates and active piezoelectric plates. These materials have been produced through original and innovative three-dimensional printing techniques. The results of this thesis can be applied to noise control in audio applications such as headphones, hearing aids and smart speakers. Similarly, other fields like aerospace and automotive industry or architectural acoustics could also greatly benefit from lightweight subwavelength noise reduction.Environmental noise impacts the everyday life of millions of people and it represents a growing concern for the health of the world's population. To mitigate this impact, noise reducing materials such as foam or barriers are employed extensively with effective results. However, the efficacy of such materials is limited by the inverse relationship between the frequency of the attenuated waves and materials characteristics like thickness and density, as described by the mass-law. In order to overcome this fundamental limitation, a new challenge in acoustic engineering has emerged to design and manufacture lightweight and subwavelength materials that can break the mass-law. A potential solution to this challenge is represented by a recently discovered family of materials, called acoustic metamaterials, which show properties typically not found in nature. These materials are made of resonant building blocks that are smaller than the wavelength of the attenuated acoustic wave. When these building blocks are combined to form a metamaterial, they lead to the formation of band gaps - near their resonance frequency - that deeply attenuate the incident sound. The manufacturing of noise reducing acoustic metamaterials could also largely benefit from recent advances in three-dimensional printing technologies, as they offer the possibility to fabricate abstract shapes and to carefully choose some properties of the printed materials. The work presented in this thesis describes the modelling, fabrication and measurement of noise reducing acoustic metamaterials based on Helmholtz resonators, thin plates and active piezoelectric plates. These materials have been produced through original and innovative three-dimensional printing techniques. The results of this thesis can be applied to noise control in audio applications such as headphones, hearing aids and smart speakers. Similarly, other fields like aerospace and automotive industry or architectural acoustics could also greatly benefit from lightweight subwavelength noise reduction

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use
    • …
    corecore