3 research outputs found

    State Estimation of Wireless Sensor Networks in the Presence of Data Packet Drops and Non-Gaussian Noise

    Full text link
    Distributed Kalman filter approaches based on the maximum correntropy criterion have recently demonstrated superior state estimation performance to that of conventional distributed Kalman filters for wireless sensor networks in the presence of non-Gaussian impulsive noise. However, these algorithms currently fail to take account of data packet drops. The present work addresses this issue by proposing a distributed maximum correntropy Kalman filter that accounts for data packet drops (i.e., the DMCKF-DPD algorithm). The effectiveness and feasibility of the algorithm are verified by simulations conducted in a wireless sensor network with intermittent observations due to data packet drops under a non-Gaussian noise environment. Moreover, the computational complexity of the DMCKF-DPD algorithm is demonstrated to be moderate compared with that of a conventional distributed Kalman filter, and we provide a sufficient condition to ensure the convergence of the proposed algorithm

    Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and Its Applications

    Get PDF
    It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included
    corecore