151 research outputs found

    Design and Control of a Compliant Joint for Upper-body Exoskeletons in Physical Assistance

    Get PDF

    Design and Development of the Biped Prototype ROBIAN

    Get PDF
    Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, May 200

    Fast biped walking with a neuronal controller and physical computation

    Get PDF
    Biped walking remains a difficult problem and robot models can greatly {facilitate} our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based neuronal network, which is governed mainly by local sensor signals. This study shows that human-like gaits emerge without {specific} position or trajectory control and that the walker is able to compensate small disturbances through its own dynamical properties. The reflexive controller used here has the following characteristics, which are different from earlier approaches: (1) Control is mainly local. Hence, it uses only two signals (AEA=Anterior Extreme Angle and GC=Ground Contact) which operate at the inter-joint level. All other signals operate only at single joints. (2) Neither position control nor trajectory tracking control is used. Instead, the approximate nature of the local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics) to contribute substantially to the overall gait trajectory computation. (3) The motor control scheme used in the local reflexes of our robot is more straightforward and has more biological plausibility than that of other robots, because the outputs of the motorneurons in our reflexive controller are directly driving the motors of the joints, rather than working as references for position or velocity control. As a consequence, the neural controller and the robot mechanics are closely coupled as a neuro-mechanical system and this study emphasises that dynamically stable biped walking gaits emerge from the coupling between neural computation and physical computation. This is demonstrated by different walking experiments using two real robot as well as by a Poincar\'{e} map analysis applied on a model of the robot in order to assess its stability. In addition, this neuronal control structure allows the use of a policy gradient reinforcement learning algorithm to tune the parameters of the neurons in real-time, during walking. This way the robot can reach a record-breaking walking speed of 3.5 leg-lengths per second after only a few minutes of online learning, which is even comparable to the fastest relative speed of human walking

    Robust Cascade Controller for Nonlinearly Actuated Biped Robots: Experimental Evaluation

    Get PDF
    In this paper we consider the postural stability problem for nonlinearly actuated quasi-static biped robots, both with respect to the joint angular positions and also with reference to the gripping effect between the foot/feet against the ground during robot locomotion. Zero moment point based mathematical models are developed to establish a relationship between the robot state variables and the stability margin of the foot (feet) contact surface and the supporting ground. Then, in correspondence with the developed dynamical model and its associated uncertainty, and in the presence of non-modeled robot mechanical structure vibration modes, we propose a robust control architecture that uses two cascade regulators. The overall robust control system consists of a nonlinear robust variable structure controller in an inner feedback loop for joint trajectory tracking, and anH∞ linear robust regulator in an outer, direct zero moment point feedback loop to ensure the foot-ground contact stability. The effectiveness of this cascade controller is evaluated using a simplified prototype of a nonlinearly actuated biped robot in double support placed on top of a one-degree-of-freedom mobile platform and subjected to external disturbances. The achieved experimental results have revealed that the simplified prototype is successfully stabilized.In this paper we consider the postural stability problem for nonlinearly actuated quasi-static biped robots, both with respect to the joint angular positions and also with reference to the gripping effect between the foot/feet against the ground during robot locomotion. Zero moment point based mathematical models are developed to establish a relationship between the robot state variables and the stability margin of the foot (feet) contact surface and the supporting ground. Then, in correspondence with the developed dynamical model and its associated uncertainty, and in the presence of non-modeled robot mechanical structure vibration modes, we propose a robust control architecture that uses two cascade regulators. The overall robust control system consists of a nonlinear robust variable structure controller in an inner feedback loop for joint trajectory tracking, and anH∞ linear robust regulator in an outer, direct zero moment point feedback loop to ensure the foot-ground contact stability. The effectiveness of this cascade controller is evaluated using a simplified prototype of a nonlinearly actuated biped robot in double support placed on top of a one-degree-of-freedom mobile platform and subjected to external disturbances. The achieved experimental results have revealed that the simplified prototype is successfully stabilized

    New Joint Design to Create a More Natural and Efficient Biped

    Get PDF
    This paper presents a human-oriented approach to design the mechanical architecture and the joint controller for a biped robot. Starting from the analysis of the human lower limbs, we figured out which features of the human legs are fundamental for a correct walking motion, and can be adopted in the mechanical design of a humanoid robot. We focus here on the knee, designed as a compliant human-like knee instead of a classical pin-joint, and on the foot, characterised by the mobility and lightness of the human foot. We implemented an elastic actuator, with a simple position control paradigm that sets the joint stiffness in real time, and developed the basic controller. Results in simulation are discussed. In our approach the robot gains in adaptability and energetic efficiency, which are the most challenging issues for a biped robot

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    A literature review on the optimization of legged robots

    Get PDF
    Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information
    corecore