30 research outputs found

    On the Reversible Effects of Bias-Stress Applied to Amorphous Indium-Gallium-Zinc-Oxide Thin Film Transistors

    Get PDF
    The role of amorphous IGZO (Indium Gallium Zinc Oxide) in Thin Film Transistors (TFT) has found its application in emerging display technologies such as active matrix liquid crystal display (LCD) and active matrix organic light-emitting diode (AMOLED) due to factors such as high mobility 10-20 cm2/(V.s), low subthreshold swing (~120mV/dec), overall material stability and ease of fabrication. However, prolonged application of gate bias on the TFT results in deterioration of I-V characteristics such as sub-threshold distortion and a distinct shift in threshold voltage. Both positive-bias and negative-bias affects have been investigated. In most cases positive-stress was found to have negligible influence on device characteristics, however a stress induced trap state was evident in certain cases. Negative stress demonstrated a pronounced influence by donor like interface traps, with significant transfer characteristics shift that was reversible over a period of time at room temperature. It was also found that the reversible mechanism to pre-stress conditions was accelerated when samples were subjected to cryogenic temperature (77 K). To improve device performance BG devices were subjected to extended anneals and encapsulated with ALD alumina. These devices were found to have excellent resistance to bias stress. Double gate devices that were subjected to extended anneals and alumina capping revealed similar results with better electrostatics compared to BG devices. The cause and effect of bias stress and its reversible mechanisms on IGZO TFTs has been studied and explained with supporting models

    From Process to Circuits: New Perspectives to Solar Cell Design

    Get PDF
    As the demand for cheap and clean energy sources increased over the last two decades, solar cells have proven to be strong candidates against the fossil fuels. From an economic perspective, in order to replace fossil fuels, it is required to reduce the cost of solar cells. This can be achieved by depositing thinner absorber layers under low process temperatures, yet these efforts lead to poorer efficiency values. Addressing such trade-offs and providing solutions to this problem have been the main objectives of this study

    AMOLED Displays with In-Pixel Photodetector

    Get PDF
    The focus of this chapter is to consider additional functionalities beyond the regular display function of an active matrix organic light-emitting diode (AMOLED) display. We will discuss how to improve the resolution of the array with OLED lithography pushing to AR/VR standards. Also, the chapter will give an insight into pixel design and layout with a strong focus on high resolution, enabling open areas in pixels for additional functionalities. An example of such additional functionalities would be to include a photodetector in pixel, requiring the need to include in-panel TFT readout at the peripherals of the full-display sensor array for applications such as finger and palmprint sensing

    ์•Œ์นผ๋ฆฌ ๊ธˆ์† ๋„ํ•‘๊ณผ ์ ˆ์—ฐ์ฒด ์—”์ง€๋‹ˆ์–ด๋ง์„ ํ†ตํ•œ ๊ณ ์„ฑ๋Šฅ ์šฉ์•ก ๊ณต์ • ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ ๊ฐœ๋ฐœ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€, 2017. 8. ๊น€์—ฐ์ƒ.Solution-processed oxide semiconductors thin-film transistors (TFTs) with transparent, flexible properties and low-cost manufacturing have a great potential for future display requiring advanced performances such as high resolution and large scale as well as unique properties such as transparency and flexibility. However, there are several limitations for practical applications. Especially, a relatively low field-effect mobility compared with that of low temperature poly Si (LTPS) TFTs and high vacuum-processed oxide semiconductor TFTs is a critical issue. Accordingly, many studies have mainly focused on the development of solution-processed oxide semiconductor TFTs having a high field-effect mobility with various methods. However, their low field-effect mobility still remains a problem. Herein, I propose alkali metal doping and dielectric engineering for the increase of field-effect mobility in solution-processed oxide semiconductor TFTs. Through alkali metal doping, the field-effect mobility of solution-processed ZnSnxOy (ZTO) TFTs was increased 2 โˆผ 3 times. Also, with the dielectric engineering, the field-effect mobility of the ZTO TFTs could be dramatically enhanced. Using various analyses with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS), developed TFT model, and the like, the mechanism how field-effect mobility is increased by the alkali metal doping and the dielectric engineering has been investigated. These methods have good potential for the application of the solution-processed oxide semiconductor in future display technology.Chapter 1. Introduction 1 1.1 References 5 Chapter 2. Literature Review and Theories 7 2.1 Thin-film transistor 7 2.1.1 Concept of thin-film transistor 7 2.1.2 Operation and parameters of TFT 10 2.1.3 Structures of TFT and their properties 14 2.2 Oxide semiconductor for TFT 17 2.3 Solution-process for oxide semiconductor TFT 23 2.4 High mobility solution-processed oxide semiconductor TFT 26 2.4.1 The need of high mobility TFT 26 2.4.2 Trends and issues 29 2.4.3 Alkali metal doping 32 2.4.4 Dielectric engineering 34 2.5 References 35 Chapter 3. High Performance Amorphous Zinc Tin Oxide Thin-Film Transistor through Alkali Metal doping 38 3.1 Overview 38 3.2 Development of alkali metal doped ZTO TFTs and electrical properties 42 3.3 Analysis of chemical properties of alkali metal doped ZTO through XPS Analysis 49 3.4 The study for role of alkali metal doping based on analyses 51 3.5 The investigation of the role of alkali metal doping through UV-visible spectroscopy 57 3.6 Experimental details 63 3.7 References 66 Chapter 4. Dramatic Enhancement of Field-Effect Mobility in Oxide Semiconductor Thin-Film Transistor through Dielectric Engineering 69 4.1 Overview 69 4.2 Development of HCA dielectric layer for dramatically enhancing a field-effect mobility 72 4.3 Electrical characterization of ZTO TFTs on HCA 75 4.4. Electrical characterization of ZTO TFTs on a bilayer dielectric layer 90 4.5 Characterization of abnormal electrical behavior in ZTO TFTs on HCA 99 4.6 Analysis of structure and material characterization with ZTO and HCA 106 4.7 Role of Al atoms in interface between ZTO and HCA 123 4.8 Electrical transport model for ZTO TFTs on HCA 127 4.9 Experimental details 131 4.10 References 135 Chapter 5. Conclusion 138 ์ดˆ๋ก(๊ตญ๋ฌธ) 140Docto

    ํ”Œ๋ผ์ฆˆ๋งˆ ํ™”ํ•™ ๊ธฐ์ƒ ์ฆ์ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ๋ฒ ๋ฆฌ์–ด ํ•„๋ฆ„ ํ•ฉ์„ฑ๊ณผ ๋””์Šคํ”Œ๋ ˆ์ด ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2019. 2. ํ™๋ณ‘ํฌ.์ž๋ฐœ๊ด‘ํ˜• ๋””์Šคํ”Œ๋ ˆ์ด์ด๋ฉฐ, ์ €์ „์•• ๊ตฌ๋™์ด ๊ฐ€๋Šฅํ•˜๊ณ  ์–‡์€ ๋‘๊ป˜๋กœ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋™์ž‘์†๋„๊ฐ€ ๋งค์šฐ ๋น ๋ฅผ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋†’์€ ํ•ด์ƒ๋„ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•œ OLED๋Š” ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ ๋น ๋ฅธ ์„ฑ์žฅ์„ธ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ OLED์˜ ๊ฐ€์žฅ ํฐ ๊ด€์‹ฌ ๋ถ„์•ผ๋Š” ๋ชจ๋ฐ”์ผ์šฉ ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๋Œ€๋ฉด์  TV, ๊ทธ๋ฆฌ๊ณ  ํ”Œ๋ ‰์‹œ๋ธ” ๋ฐ ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌํ˜„์ด๋‹ค. ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌ๋™ํ•˜๊ธฐ ์œ„ํ•œ ๊ตฌ๋™์†Œ์ž๋Š” ์ˆ˜๋™ํ˜•(passive matrix)๊ณผ ๋Šฅ๋™ํ˜•(active matrix, AM)๋กœ ๋‚˜๋‰˜๋ฉฐ, ์ˆ˜๋™ํ˜•์— ๋น„ํ•˜์—ฌ ๊ณ ํ™”์งˆ, ๋‚ฎ์€ ์†Œ๋น„ ์ „๋ ฅ, ๋Œ€ํ˜•ํ™”์— ์œ ๋ฆฌํ•œ ๋Šฅ๋™ํ˜• ๋””์Šคํ”Œ๋ ˆ์ด๊ฐ€ ์„ ํ˜ธ๋œ๋‹ค. ํ‘œ์‹œ์†Œ์ž๋ฅผ ๋Šฅ๋™ ๊ตฌ๋™ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ™”์†Œ๋งˆ๋‹ค ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ(thin-film transistor, TFT)์™€ ๊ฐ™์€ ์Šค์œ„์นญ ์†Œ์ž๋ฅผ ๋ถ€์ฐฉ์‹œ์ผœ์•ผ ํ•œ๋‹ค. ๋Šฅ๋™ํ˜• ๊ตฌ๋™์†Œ์ž์˜ ๊ฒฝ์šฐ ํ˜„์žฌ์˜ TFT-LCD๋‚˜ AMOLED์šฉ ๋ฐฑํ”Œ๋ ˆ์ธ์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋น„์ •์งˆ ์‹ค๋ฆฌ์ฝ˜(a-Si), ์ €์˜จ ๋‹ค๊ฒฐ์ • ์‹ค๋ฆฌ์ฝ˜ (LTPS) ๊ธฐ์ˆ ์ด ์šฐ์„  ๊ฐœ๋ฐœ๋˜์–ด ์‘์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ํฐ ๋ฐด๋“œ ๊ฐญ์„ ๊ฐ€์ง€๋Š” ๋น„์ •์งˆ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด๋ฅผ ์ด์šฉํ•ด ํˆฌ๋ช…ํ•˜๋ฉด์„œ ๋น ๋ฅธ ์‘๋‹ต์†๋„์˜ ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌ๋™์†Œ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ๋ฐฐ์„ ์˜ RC Delay๋ฅผ ์ตœ์†Œํ™” ์‹œ์ผœ์•ผ ํ•˜๊ณ , ํŒŒ์›Œ์†Œ๋น„๋Ÿ‰์„ ์ค„์—ฌ์•ผ ํ•˜๋Š” ๊ธฐ์ˆ ์ ์ธ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ณ ํ•ด์ƒ๋„์ธ UHD (Ultra High Definition)์˜ backplane์—์„œ ๊ณ ์† TFT ๊ตฌํ˜„์„ ์œ„ํ•˜์—ฌ SD(Source-Drain) ๋ฉ”ํƒˆ ๋ฐฐ์„  ๊ตฌํ˜„์€ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SD ๋ฉ”ํƒˆ ๋ฐฐ์„ ์œผ๋กœ์จ ์ €์ €ํ•ญ ๋ฐฐ์„ ์ธ Copper ๋ฐฐ์„ ์˜ diffusion barrier ์—ญํ• ์„ ํ•˜๋Š” Graphite ์„ฑ์žฅ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ Graphene ํ•ฉ์„ฑ์€ ๊ธฐ๊ณ„์  ๋ฐ ํ™”ํ•™์  ๋ฐ•๋ฆฌ ๋ฐฉ๋ฒ•์—๋Š” ๋Œ€๋ฉด์  ํŒจ๋„ ๊ตฌํ˜„์œผ๋กœ์จ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋Œ€ํ˜• Size scale Graphene ์‹œ๋„๋Š” ์ „๊ทน์œผ๋กœ์จ Graphene ํ™œ์šฉ์€ ์žˆ์ง€๋งŒ, ์ด ๊ตฌํ˜„์€ Thermal CVD (900~1000โ„ƒ)์—์„œ Graphene ์„ ํ•ฉ์„ฑํ•˜๊ณ , Glass์— transfer ํ•œ ๋…ผ๋ฌธ์œผ๋กœ์จ ์‹ค์ œ ๋Œ€๋ฉด์ ์œผ๋กœ ๋งŒ๋“œ๋Š” ๊ณต์ • ์ ์šฉ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด์— ํ˜„์žฌ ๋งŽ์ด ์—ฐ๊ตฌ๋Š” ์ง„ํ–‰ ์ค‘์ด๊ณ  ์žˆ์ง€๋งŒ, PECVD (Plasma Enhanced Chemical Vapor Deposition)๋ฅผ ์ด์šฉํ•œ graphite ๋ฐ•๋ง‰ ํ•ฉ์„ฑ์€ ๋Œ€ํ˜• size, mass production์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉฐ, ์•„์ง mass production ์ ์šฉ์„ ์œ„ํ•ด ์—ฐ๊ตฌํ•ด์•ผ ํ•  ์ ์€ ๋งŽ์ง€๋งŒ, ์ €์˜จ ๊ณต์ • Graphite ํ•ฉ์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด, large scale device ๊ตฌํ˜„์— ํ•œ์ธต ๋” ์ง„๋ณด๋œ ๊ธฐ์ˆ ์ด ๋  ๊ฒƒ์ž„์„ ํ™•์‹ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ Copper diffusion barrier ์œผ๋กœ์จ์˜ ์—ญํ• ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ฆ์ฐฉ ์˜จ๋„๋ฅผ ์ €์˜จ์œผ๋กœ ํ•ฉ์„ฑํ•จ์œผ๋กœ์จ TEM ๋ฐ EDAX ๋ถ„์„์œผ๋กœ Graphite barrier ๋ฐ mass production์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ง์ ‘์ ์ธ PECVD ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋Œ€๋ฉด์ ์ด ๊ฐ€๋Šฅํ•จ์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋Œ€๋ฉด์  ํ•ฉ์„ฑ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•ด ์ค„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์ด ๋  ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ ๋””์Šคํ”Œ๋ ˆ์ด์˜ TFT ํŠน์„ฑ๋„ ๊ธฐ์กด์˜ Active material ์ธ a-Si TFT๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋†’์€ ๊ณ ์ด๋™๋„ ์†Œ์ž๋ฅผ ์š”๊ตฌํ•˜๋ฉฐ, ํŠนํžˆ ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๊ณ ์ด๋™๋„ ํŠน์„ฑ์„ ๊ท ์ผํ•˜๊ฒŒ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์‹ ๊ทœ TFT๋ฅผ ์š”๊ตฌํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด์— ๋Œ€ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ์‚ฐํ™”๋ฌผ TFT๋กœ์จ ZnO (Zinc Oxide), IZO (Indium Zinc Oxide), a-IGZO (Amorphous Indium Gallium Zinc Oxide) ๋“ฑ์˜ ์žฌ๋ฃŒ๊ฐ€ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ a-Si์˜ ์ด๋™๋„ (<1cm2/VยทS) ๋ณด๋‹ค ๋†’์€ ์ด๋™๋„๋ฅผ ๊ฐ€์ง„ IGZO ์žฌ๋ฃŒ๋Š” ํˆฌ๋ช…ํ•œ ์†Œ์ž๋กœ์จ ํˆฌ๋ช…๋””์Šคํ”Œ๋ ˆ์ด์—์„œ๋„ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜์—ฌ, ์‘์šฉ์„ฑ์„ ํ™•๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํˆฌ๋ช…๋””์Šคํ”Œ๋ ˆ์ด ์—์„œ๋„ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก a-IGZO๋ฅผ substrate๋กœ ํ•˜๋Š” Graphite ๋ฐ•๋ง‰์„ ํ•ฉ์„ฑ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ , ๋Œ€๋ฉด์  ๊ตฌํ˜„์œผ๋กœ์จ ๊ทธ ์‘์šฉ์„ฑ์„ ๊ธฐ๋Œ€ํ•˜๊ณ  ์žˆ๋‹ค. Graphite์˜ ์ €์˜จ ํ•ฉ์„ฑ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์€ ๊ธฐ์กด ๋ผ์ธ์˜ CVD ์žฅ๋น„ ๊ต์ฒด ์—†์ด ๋‹จ์ง€ Graphene Gas ์‚ฌ์šฉ๋งŒ์œผ๋กœ ๊ณต์ •์„ ๊ตฌํ˜„ํ•œ๋‹ค๋Š” ์ ์ด cost ๋ฐ ๊ณต์ • ๋‹จ์ˆœํ™”์˜ ๊ด€์ ์—์„œ ๋งŽ์€ ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๊ณ ์† ๊ตฌ๋™์„ ์œ„ํ•˜์—ฌ SD ๋ฐฐ์„ ์œผ๋กœ metal๋ฟ ์•„๋‹ˆ๋ผ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด๋กœ๋„ Graphite ํ•ฉ์„ฑ์˜ catalyst๋กœ์จ ์‚ฌ์šฉ๋˜์–ด, ํŒจ๋„ ๊ตฌํ˜„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์ค€๋‹ค๋Š” ๊ด€์ ์—์„œ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ Graphite ํ•ฉ์„ฑ ๊ธฐ์ˆ ์„ thin film ๋ฐ•๋ง‰์„ ๋งŒ๋“ค์–ด ๋‹ค๋ฅธ application ์—์„œ๋„ ํ™œ์šฉ ๊ฐ€๋Šฅํ•จ์„ ๋ณด์—ฌ์คŒ์œผ๋กœ์จ ํŒŒ๊ธ‰ ํšจ๊ณผ๊ฐ€ ํฌ๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. ๋‹ค์Œ ์—ฐ๊ตฌ์—์„œ๋Š” LCD ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ Backlight ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ด๋‹ค. Back light๋Š” ๊ฐ€์‹œ๊ด‘์„  ์˜์—ญ ๋ฟ ์•„๋‹ˆ๋ผ UV ํŒŒ์žฅ์˜์—ญ๋„ ํฌํ•จํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, Active ์žฌ๋ฃŒ์ธ a-IGZO ์†Œ์ž์—์„œ TFT ํŠน์„ฑ์˜ ๋ถˆ์•ˆ์ •์„ฑ์˜ ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. IGZO์˜ ํŠน์„ฑ์ƒ UV ํŒŒ์žฅ๋Œ€์—์„œ์˜ ๋น›๊ณผ์˜ ๋ฐ˜์‘์œผ๋กœ TFT ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ ํŠน์„ฑ์ด ์•…ํ™”๋˜๋Š” ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž Barrier ๋ฐ•๋ง‰์„ ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” TFT์˜ ์‹ ๋ขฐ์„ฑ ๋ฐ ์•ˆ์ •์„ฑ์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ Photo blocking barrier๋กœ์จ SiGe (Silicon Germanium) ๋ฐ•๋ง‰ ์žฌ๋ฃŒ ํ•ฉ์„ฑ์„ ํ†ตํ•˜์—ฌ TFT ์‹ ๋ขฐ์„ฑ์˜ ํŠน์„ฑ ๋ณ€ํ™” ์—†๋Š” ๊ฒƒ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ด์ „ SiGe ์—ฐ๊ตฌ๋˜์–ด์ง„ ๋ฐ”๋กœ๋Š” ํƒœ์–‘์ „์ง€์—์„œ P-I(intrinsic layer)-Nํ˜• ๊ตฌ์กฐ์—์„œ ์ค‘๊ฐ„ ์‚ฝ์ž…์ธต์—์„œ ๋ถˆ์ˆœ๋ฌผ์ด ์ฒจ๊ฐ€๋˜์ง€ ์•Š์€ ๋ฌด์ฒจ๊ฐ€์ธต (Intrinsic layer)์—์„œ SiGe ์ด ๊ด‘ํก์ˆ˜์ธต์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด์ง„ ์—ฐ๊ตฌ๊ฐ€ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” TFT ์†Œ์ž์—์„œ a-IGZO ๊ฐ€ ๊ด‘๋ฐ˜์‘์œผ๋กœ ์ธํ•ด ์‚ฐ์†Œ ๊ฒฐํ• (Oxygen Vacancy)์„ ๋ง‰์•„ TFT ํŠน์„ฑ์˜ ์ €ํ•˜ ํšจ๊ณผ๋ฅผ ๋ง‰๊ณ ์ž SiGe์˜ ๊ด‘ ์ฐจ๋‹จ ๋ฐ•๋ง‰ ํ˜•์„ฑ์„ ํ†ตํ•ด ๊ด‘๋ฐ˜์‘์œผ๋กœ ์ธํ•œa-IGZOํŠน์„ฑ ๋ณ€ํ™”๊ฐ€ ๋˜์ง€ ์•Š๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ฐ•๋ง‰ ํ˜•์„ฑ ๋ฐ ์ ์ธต ๊ตฌ์กฐ์—์„œ SiGe ์™€ IGZO์˜ ๋ฐ•๋ง‰ ์‚ฌ์ด์— Capacitance ํ˜•์„ฑ์œผ๋กœ ์ „์ž์˜ charge๊ฐ€ IGZO ๋ฐ•๋ง‰ ๊ณ„๋ฉด์— ๋ˆ„์ ๋˜์–ด, ํŠธ๋žœ์ง€์Šคํ„ฐ ํŠน์„ฑ์ด ๋‹จ๋ฝ(short) ํ˜„์ƒ์ด ๋ฐœ์ƒ ํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด Buffer layer ์˜ ๋‘๊ป˜ ์กฐ์ ˆ์ด ์ค‘์š”ํ•˜์˜€๋‹ค. ์ด์— Buffer layer์˜ ๋‘๊ป˜ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•ด ํ•˜๋ถ€์—์„œ ๋“ค์–ด์˜ค๋Š” ๋น›์—๋„ ์ฐจ๋‹จ์„ ํ•  ์ˆ˜ ์žˆ๋Š” Barrier ์ ์ธต ๊ตฌ์กฐ๋ฅผ ๋งŒ๋“ค์–ด TFT ์†Œ์ž์˜ ์‹ ๋ขฐ์„ฑ ๊ฐœ์„ ๋จ์„ ๋ณด์—ฌ์ฃผ๊ณ ์ž ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ Window ๋ฐ ๋ƒ‰์žฅ๊ณ ์—์„œ ๋ฌธ์„ ์—ด์ง€ ์•Š๊ณ  ๋‚ด์šฉ๋ฌผ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ํˆฌ๋ช… ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ํ”Œ๋ ‰์‹œ๋ธ” ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌํ˜„์„ ์œ„ํ•ด ์—ฌ๋Ÿฌ ์š”์†Œ์˜ ๊ธฐ์ˆ  ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด ๊ตฌํ˜„์„ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์˜ Barrier ๋ฐ•๋ง‰ ๊ตฌํ˜„์€ ํ•„์ˆ˜์ ์ธ ์š”์†Œ๋กœ ์‘์šฉ์„ฑ์ด ํ™•๋Œ€๋˜์–ด ํ™œ์šฉ๋จ์„ ๊ธฐ๋Œ€ํ•ด ๋ณธ๋‹ค.OLED is a self-emissive display can be driven at low voltage and manufactured in a thin layer. In addition, this display operates at a very high speed and emit a color that can be rapidly implemented. Recently, OLEDs main interest is mobile screen, large screen TV, flexible and transparent display. The driving device for display is classified to the passive matrix and active matrix. Active matrix is preferred because of higher resolution, lower energy consumption, and large size screen. To apply active matrix on display device, a switching device such as thin-film transistor (TFT) is attached to each pixel. For active driving devices, amorphous silicon (a-Si) and low-temperature polycrystalline silicon (LTPS) technologies are applied in current TFT โ€“LCD or AMOLED back frame. Recently, there is an ongoing research on using amorphous oxide semiconductors with large bandgaps to research transparent and fast responsive display driving devices. Moreover, RC delay has a technical problem that must be minimized and reduce power consumption. Implementation of Source Drain (SD) is a metal wiring essential element for high-speed TFT execution in high-resolution UHD (Ultra High Definition) displays backplane. In this study, the graphite growth plays the role of diffusion barrier of copper wiring that has low resistance wiring with SD metal wiring. The chemical and mechanical stripping methods of conventional graphene synthesis application on large area panels is limited. Up to now, the large size graphene has been used as an electrode, but this implementation is limited to making the large-scale process by synthesizing graphene at thermal CVD (900~1000ยฐC) and transferring it to the glass. Despite the fact, a lot of ongoing studies, graphites thin film synthesis using Plasma Enhanced Chemical Vapor Deposition (PECVD) enables large size and mass production. Furthermore, this area still requires more research on mass production. If low-temperature process for graphite synthesis is possible, this will become a more advanced technology for device implementation. In this study, the role of copper diffusion barrier was verified, and the possibility of graphite barrier and mass production was verified by TEM and EDAX analysis by synthesizing the deposition temperature at low temperature. In addition, this study suggests the large size display can be obtained through direct PECVD synthesis that will solve the existing problems of large size synthesis. The displays TFT characteristics also require a high mobility device that is much higher than the conventional active material a-Si TFT. In particular, a new TFT capable of applying a transparent display and uniformly having high mobility characteristics is required. Materials such as ZnO (Zinc Oxide), IZO (Indium Zinc Oxide) and IGZO (Indium Gallium Zinc Oxide) have been studied as oxide TFTs. IGZO materials with higher mobility than conventional a-Si mobility (<1 cm2 / V ยท s) are transparent devices and can be used in transparent displays, thus extending applicability. In this study, we propose a graphite synthesis based on IGZO to be applicable to transparent display and expect the application on large size displays. The low-temperature Graphite synthesis has many advantages in terms of cost and process simplification because it implements the process only by using Graphene gas without replacing existing CVD equipment. In addition, it can be used as a graphite synthesis catalyst not only for metal but also for the oxide semiconductor, to raise activation. Moreover, the graphite synthesis to make a thin film can be applied to other fields. In the next study, it is essential to use backlight in LCD display. The backlight not only includes the visible light but also the UV region, and has instability of TFT characteristics in the active material IGZO device. Due to IGZOs reaction to light in UV region, it is essential to use a barrier film in order to solve the reliability characteristics of the TFT device deterioration. To maintain the reliability and stability of the TFT, this study on reliability of the TFT was not changed by SiGe (Silicon Germanium) synthesis thin film as a photo blocking barrier. Based on previous research on SiGe has been used as the light absorbing layer in the intrinsic layer in which a P-I (intrinsic layer)-N type structure in a solar cell that is not doped with an impurity in an intermediate insertion layer. In this study, in order to prevent oxygen vacancy during a-IGZO photoreaction on TFT device, the formation of a light-shielding film of Si-Ge prevents oxygen deficiency. Capacitance formation between SiGe and IGZO thin film in the thin film formation and lamination structure accumulates electrons charge on the IGZO thin film interface. The characteristics of the transistor were short, and to prevent this shortness, it is important to control the thickness of the buffer layer. Therefore, this shows that the reliability of the TFT device is improved by making the barrier laminate structure that can block the light from the bottom through the optimization of the thickness of the buffer layer. There are various ongoing technological studies on transparent and flexible displays that to observe the contents without opening the door through the smart window and refrigerator. For this application, the thin film barrier is an essential element and expect to be implemented.Table of Contents Abstract.........................................................................1 Contents........................................................................6 List of Figures.................................................................9 List of Tables................................................................15 Chapter 1. Introduction................................................16 1.1. Graphene characteristics 1.2. Amorphous Si:H and LTPS TFT backplane technology in display 1.3. High performance amorphous In-Ga-Zn-O TFTs 1.4. Overview of PECVD system 1.5. References Chapter 2. Growth of thin graphite films for solid diffusion barriers .......................................................60 2.1. Large-scale transfer-free growth of thin graphite films at low temperature for solid diffusion barriers 2.1.1. Introduction 2.1.2. Experimental 2.1.3. Results and discussion 2.1.4. Conclusion 2.1.5. References Chapter 3. Growth of silicon germanium films for photo-blocking layers in industrial display.................99 3.1. Silicon germanium photo-blocking layers for a-IGZO based industrial display 3.1.1. Introduction 3.1.2. Experimental 3.1.3. Results and Discussion 3.1.4. Conclusion 3.1.5. References Abstract in Koreanโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ130 Appendixโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ135Docto

    Thermal & electrical simulation for the development of solid-phase polycrystalline silicon TFTs

    Get PDF
    Solid phase crystallization (SPC) is a processing technique used for conversion of amorphous silicon (a-Si) to polycrystalline silicon (poly-Si). SPC can potentially be used as an alternative to excimer laser annealing to fabricate the semiconductor layer for thin-film transistors (TFTs) in active-matrix liquid crystal display (AMLCD). It is a technique suitable for large-area applications since it involves easily scalable thermal processes in the form of rapid thermal annealing (RTA) and furnace annealing (FA). The SPC parameter space involves the time and temperature of the FA, and the time, temperature, and number of pulses in the RTA process. In developing new process flows for thin-film transistors (TFTs) using SPC, thermal and electrical device simulation are invaluable tools. Comsolยฎ was utilized to explore this SPC experimental parameter space, and provided important insight on temperature conditions not directly measureable on glass substrates (see Fig. 1). Silvaco\u27s Atlasยฎ was utilized to evaluate the TFT response variables of sub-threshold slope (SS), threshold voltage (VT), and maximum current (Imax). Further, a procedure for fitting TFT device characteristics using Atlas was developed. From this simulation fit (see Fig. 2), theoretical trap state distributions for the semiconducting film can be extracted, as well as the trap state distributions at the oxide-semiconductor interfaces

    GaN Micro-LED Integration with Thin-Film Transistors for Flexible Displays

    Get PDF
    The research presented provides a systematic attempt to address the major challenges for the development of flexible micro-light-emitting diode (LED) displays. The feasibility of driving GaN-based micro-LEDs with a-Si:H-based thin-film transistors by using a thin-film bonding and transfer process was initially proposed. This approach was implemented to create an inverted pixel structure where the cathode of the LED is connected directly to the drain contact of the drive TFT resulting in a pixel circuit having more than 2ร— higher brightness compared to a standard pixel design. This โ€œpaste-and-cutโ€ technique was further demonstrated for the development of flexible displays, enabling the study of the effect of mechanical strain and self-heating of the devices on plastic. Through a finite-element analysis, it was determined that the applied stress-induced strain near the quantum wells of the micro-LEDs are negligible for devices with diameters smaller than 20 microns. Thermal simulation of the LEDs on plastic revealed that a copper bond layer thicker than 600 nm can be used to alleviate self-heating effects of the micro-LEDs. Using these design parameters, micro-LED arrays with 20 micron diameter were integrated onto flexible substrates to validate the theoretical predictions. Further scaling of the LED size revealed substrate bending also tilts the direction of the LED structure, allowing further extraction of light. This effect was demonstrated using nanowire LEDs with a 250 nm diameter transferred onto plastic, where the light output could be enhanced by 2ร— through substrate bending. Finally, through the removal of bulk defect and surface states, fabrication of highly efficient micro-LEDs having > 400% increase in light output (compared to conventional diodes) was achieved. This outcome was accomplished through the removal of the defective buffer region adjacent to the active layers of the LED and minimization of the non-radiative recombination at the sidewalls. The former was accomplished through the removal of the buffer layer after separation of the LED from the process wafer while the latter is accomplished using a surround cathode gate electrode to deplete free carriers from the sidewall of the forward-biased LED. The resulting performance enhancements provided a basis for high-brightness flexible micro-LED displays developed in this dissertation

    Implant Activated Source/Drain Regions for Self-Aligned IGZO TFT

    Get PDF
    In this work, amorphous Indium Gallium Zinc Oxide (IGZO) TFTs with channel lengths scaled as small as L = 1 ยตm are presented which demonstrate excellent electrical characteristics, however the traditional metal-contact defined source/drain regions typically require several microns of gate overlap in order to provide ohmic behavior with minimal series resistance and ensure tolerance to overlay error. In addition, further scaling the channel length by simply reducing the source/drain metal gap is not feasible. The focus of this study is to investigate techniques to realize self-aligned (SA) IGZO TFTs that are not subject to gate-source/drain misalignment due to overlay error or process bias. Top gate (TG) co-planar and bottom gate (BG) staggered TFTs are fabricated using plasma immersion and ion implantation to selectively form conductive IGZO regions, with the channel region blocked by a gate-defined mask. Among the investigated treatments, oxygen plasma activation and ion implanted activation via 11B+ and 40Ar+ has been successfully demonstrated. Due to metal gate charging during ion implantation of SA-TG devices, the characteristics show a significant left-shift whereas SA-BG devices do not show this behavior. Electrical results suggest a defect-induced mechanism is involved with 40Ar+ implant activation of the S/D regions. However, 11B+ implant activation is attributed to the formation of an electrically active donor species involving chemical bonding. Both boron and argon demonstrate pronounced degradation in charge injection at higher dose treatments. Finally, a novel lithographic strategy which utilizes top-side flood exposure rather than a back-side through-glass exposure has also been explored, which would enable SA-BG devices on non-transparent substrates

    Interpretation and Physical Modeling of Electronic Transport and Defect States in IGZO Thin-Film Transistors

    Get PDF
    This work is a comprehensive study on the interpretation and modeling of electronic transport behavior and defect states in indium-gallium-zinc-oxide (IGZO) TFTs. Key studies have focused on advancing the state of IGZO TFTs by addressing several challenges in device stability, scaling, and device modeling. These studies have provided new insight on the associated mechanisms and have resulted in the realization of scaled thin-film transistors that exhibit excellent electrical performance and stability. This work has demonstrated the ability to scale the conventional inverted staggered IGZO TFT down to one micron channel length, with excellent on-state and off-state performance where the VT โ‰ˆ1 V, ยตeff =12 cm2/Vs, Ileak โ‰ค 10-12 A/ยตm and SS โ‰ˆ 160 mV/dec. The working source/drain electrodes are direct metal contact regions to the IGZO, which requires several microns of gate overlap to provide ohmic behavior with minimal series resistance and ensure tolerance to overlay error. New results utilizing ion implantation for self-aligned source/drain regions present a path towards submicron channel length. This strategy offers a reduction in channel length as well as parasitic capacitance, which translates to improvement in RC delay and associated voltage losses due to charge-sharing. The realization of self-aligned TFTs using boron ion implantation for selective activation was introduced in a first-time report of boron-doped IGZO. Cryogenic measurements made on long-channel devices has revealed temperature-dependent behavior that is not explained by existing TCAD models employed for defect states and carrier mobility. A completely new device model using Silvaco Atlas has been established which properly accounts for the role of donor-like oxygen vacancy defects, acceptor-like band-tail states, acceptor-like interface traps, and a temperature-dependent intrinsic channel mobility. The developed model demonstrates a remarkable match to transfer characteristics measured at T = 150 K to room temperature. A power-law fit for the ยตch = f(T) relationship, which resembles ใ€–ฮผ ~ Tใ€—^((+3)โ„2) behavior consistent with ionized defect scattering. The mobility model is expressly independent of carrier concentration, without dependence on the applied gate bias. The device model is consistent with a compact model developed for circuit simulation (SPICE) that has been recently refined to include on-state and off-state operation. While IGZO is the only AOS technology mature enough for commercialization, the effective electron channel mobility ยตeff ~ 10 cm2/Vs presents a performance limitation. Other candidate AOS materials which have higher reported channel mobility values have also been investigated; specifically, indium-tungsten-oxide (IWO) and indium-gallium-tin-oxide (ITGO). These investigations serve as preliminary studies; device characteristics support the claims of high channel mobility; however the influence of defect states clearly indicates the need for further process development. The advancements realized in IGZO TFTs in this work will serve as a foundation for these alternative AOS materials

    ์ „๋ฅ˜ ์„ผ์‹ฑ ํ”ผ๋“œ๋ฐฑ ์‹œ์Šคํ…œ์„ ์ด์šฉํ•œ ๊ณ ์•ˆ์ •์„ฑ ์‚ฐํ™”๋ฌผ TFT ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ์˜ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์ •๋•๊ท .Integration of shift registers on the glass panel allows the display to be thinner, lighter, and cheaper to produce, thanks to the reduction of the number of ICs for scanning horizontal lines. Circuits of the shift register employing n-type thin film transistors (TFTs), such as hydrogenated amorphous silicon (a-Si:H) and oxide TFTs, have been reported. Recently, oxide TFTs attract much attention due to their high mobility (5~10 cm2/Vโˆ™s) compared with that of a-Si:H TFT (0.8cm2/Vโˆ™s). However, oxide TFTs often suffer from severe degradation of the threshold voltage (VTH) against the temperature and electrical stress. In this paper, in order to compensate the instability of oxide TFTs in the shift register, an oxide TFT with double gates, which can control VTH by varying the top gate bias (VTG) is adopted. The top gate of the double-gate TFT can be fabricated in the same process for the pixel IZO (Indium Zinc Oxide) so that an additional process only for the top gate is not required. Adequate VTG is provided timely, adaptively to the gate of the oxide TFTs to stabilize the threshold voltage. The fabrication result shows that the proposed shift register using VTG set at an adapted value become stable at 100โ„ƒ whereas the conventional one is mal-functioning. The optimum VTG varies from product to product and changes continuously over the lifetime of the display. Therefore, the feedback driving system suitable for the proposed shift register is required to search the optimum VTG. The system has two main functionsthe first is to sense the current of shift register and the second is the searching algorithm for finding the optimum VTG. When the transistors are degraded by an external stress, the current of the whole shift registers is changed. The information about the VTH degradation in the shift register can be gathered via current sensing circuit. The sensed current is integrated to generate the output and is forwarded to an ADC. The binary-converted current of shift register is processed by the proposed algorithm in the digital domain for obtaining an optimum VTG and then the result is converted back to analog to generate VTG. The IC implementing such functions is fabricated in a 0.18 ฮผm BCDMOS process. When the shift register current is measured on the conventional system with increasing temperature up to 80โ„ƒ, it is increased to more than 10 times than that at the room temperature. However, the proposed feedback system keeps a highly stable (<13%) current level of shift register up to 80โ„ƒ with an optimized VTG.Abstracts i Table of Contents iii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Background 2 1.2 Outline 7 Chapter 2 Review of oxide-based TFT device and N-type TFT circuit design 8 2.1 Overview 9 2.1.1 Characteristics of Oxide TFT 9 2.2 Oxide-based TFT 14 2.2.1 Electrical characteristics of oxide-based TFT 14 2.2.2 Stability of oxide-based TFT 18 2.3 NMOS driving circuit 24 2.3.1 Bootstrapping driving circuit 24 2.3.2 Shift register with n-type TFT 28 Chapter 3 Proposed Oxide TFT Shift Register 37 3.1 Overview 38 3.2 Characteristic of Double Gate TFT 39 3.3 Design of New shift register 46 3.3.1 Simulation Result of Conventional shift register 46 3.3.2 New shift register using Double Gate TFT 51 3.3.3 Simulation Modeling of Double Gate TFT 58 3.3.4 Simulation and Experimental Result 61 Chapter 4 Real Time Current-Sensing Feedback Compensation System 71 4.1 Overview 72 4.2 System Architecture 74 4.3 Circuit Design 77 4.3.1 Current Sensing Block 77 4.3.2 ADC/DAC Block 85 4.4 Optimum Point Searching Algorithm 100 4.5 System Verification 106 Chapter 5 Summary 116 Appendix A SPICE models 118 Bibliography 120Docto
    corecore