579 research outputs found

    The Flying Monkey: a Mesoscale Robot that can Run, Fly, and Grasp

    Get PDF
    The agility and ease of control make a quadrotor aircraft an attractive platform for studying swarm behavior, modeling, and control. The energetics of sustained flight for small aircraft, however, limit typical applications to only a few minutes. Adding payloads – and the mechanisms used to manipulate them – reduces this flight time even further. In this paper we present the flying monkey, a novel robot platform having three main capabilities: walking, grasping, and flight. This new robotic platform merges one of the world’s smallest quadrotor aircraft with a lightweight, single-degree-of-freedom walking mechanism and an SMA-actuated gripper to enable all three functions in a 30 g package. The main goal and key contribution of this paper is to design and prototype the flying monkey that has increased mission life and capabilities through the combination of the functionalities of legged and aerial roots.National Science Foundation (U.S.) (IIS-1138847)National Science Foundation (U.S.) (EFRI-124038)National Science Foundation (U.S.) (CCF-1138967)United States. Army Research Laboratory (W911NF-08-2-0004)Wyss Institute for Biologically Inspired Engineerin

    Event-driven visual attention for the humanoid robot iCub.

    Get PDF
    Fast reaction to sudden and potentially interesting stimuli is a crucial feature for safe and reliable interaction with the environment. Here we present a biologically inspired attention system developed for the humanoid robot iCub. It is based on input from unconventional event-driven vision sensors and an efficient computational method. The resulting system shows low-latency and fast determination of the location of the focus of attention. The performance is benchmarked against an instance of the state of the art in robotics artificial attention system used in robotics. Results show that the proposed system is two orders of magnitude faster that the benchmark in selecting a new stimulus to attend

    Analysis and control of a dragonfly-inspired robot

    Get PDF
    Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper it is studied the dynamics of a dragonfly-inspired robot. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movement, the dynamics and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.N/

    Micro-Scale Flapping Wings for the Advancement of Flying MEMS

    Get PDF
    This research effort presents conceptual micro scale air vehicles whose total dimensions are less than one millimeter. The initial effort was to advance the understanding of micro aerial vehicles at sub-millimeter dimensions by fabricating and testing micro scale flapping wings. Fabrication was accomplished using a surface micromachining process called PolyMUMPs™. Both rigid mechanical structures and biomimetic devices were designed and fabricated as part of this effort. The rigid mechanical structures focused on out of plane deflections with solid connections and assembling a multiple hinge wing structure through the aid of residual stress. These devices were actuated by double hot arm thermal actuators. The biomimetic structures derived from three different insect wings to include; the dragonfly, house fly, and butterfly were selected based off of an attribute that each insect possesses in nature. The dragonfly was chosen for its high maneuverability and hovering capabilities. The house fly wing was chosen because of its durability and the butterfly wing was chosen because of its flexibility. The fabricated wings utilize a thermal bimorph structure consisting of polysilicon and gold which allows device actuation through joule heating. The released micro wings had an initial upward deflection due to residual stress between the gold and polysilicon material layers. Joule heating, from an applied bias, forces the wing to deflect downward due to the coefficient of thermal expansion mismatch between the material layers. Each fabricated bio-wing structure was tested for deflection range as well as operating frequency. From the experimental testing of the micro scale flapping bio-wings, aerodynamic values were calculated to include; aspect ratio, reduced frequency in a hover, Reynolds number of a hovering device, drag force, and gravitational force. The research verified insect based wings on the micro scale are capable of producing the desired flapping motion

    Design optimization and wind tunnel investigation of a flapping system based on the flapping wing trajectories of a beetle's hindwings

    Get PDF
    To design a flapping-wing micro air vehicle (FWMAV), the hovering flight action of a beetle species (Protaetia brevitarsis) was captured, and various parameters, such as the hindwing flapping frequency, flapping amplitude, angle of attack, rotation angle, and stroke plane angle, were obtained. The wing tip trajectories of the hindwings were recorded and analyzed, and the flapping kinematics were assessed. Based on the wing tip trajectory functions, bioinspired wings and a linkage mechanism flapping system were designed. The critical parameters for the aerodynamic characteristics were investigated and optimized by means of wind tunnel tests, and the artificial flapping system with the best wing parameters was compared with the natural beetle. This work provides insight into how natural flyers execute flight by experimentally duplicating beetle hindwing kinematics and paves the way for the future development of beetle-mimicking FWMAVs

    A Flight Strategy for Intelligent Aerial Vehicles Learned from Dragonfly

    Get PDF

    Research issues in biological inspired sensors for flying robots

    Get PDF
    Biological inspired robotics is an area experiencing an increasing research and development. In spite of all the recent engineering advances, robots still lack capabilities with respect to agility, adaptability, intelligent sensing, fault-tolerance, stealth, and utilization of in-situ resources for power when compared to biological organisms. The general premise of bio-inspired engineering is to distill the principles incorporated in successful, nature-tested mechanisms of selected features and functional behaviors that can be captured through biomechatronic designs and minimalist operation principles from nature success strategies. Based on these concepts, robotics researchers are interested in gaining an understanding of the sensory aspects that would be required to mimic nature design with engineering solutions. In this paper are analysed developments in this area and the research aspects that have to be further studied are discussed.N/

    Experimental studies of tail shapes for hummingbird-like flapping wing micro air vehicles

    Get PDF

    Experimental Analysis of Artificial Dragonfly Wings Using Black Graphite and Fiberglass for Use in Biomimetic Micro Air Vehicles (BMAVs)

    Get PDF
    This article examines the suitability of two different materials which are black graphite carbon fiber and red pre-impregnated fiberglass from which to fabricate artificial dragonfly wing frames. These wings could be of use in Biomimetic Micro Aerial Vehicles (BMAV). BMAV are a new class of unmanned micro-sized air vehicles that mimic flying biological organisms. Insects, such as dragonflies, possess corrugated and complex vein structures that are difficult to mimic. Simplified dragonfly wing frames were fabricated from these materials and then a nano-composite film was adhered to them, which mimics the membrane of an actual dragonfly. Experimental analysis of these results showed that although black graphite carbon fiber and red pre-impregnated fiberglass offer some structural advantages, red pre-impregnated fiberglass was a less preferred option due to its warpage and shrinking effects. Black graphite carbon fiber with its high load bearing capability is a more suitable choice for consideration in future BMAV applications
    corecore