557 research outputs found

    Experimental Verification of a Harmonic-Rejection Mixing Concept using Blind Interference Canceling

    Get PDF
    Abstract—This paper presents the first practical experiments\ud on a harmonic rejection downconverter, which offers up to 75 dB of harmonic rejection, without an RF filter. The downconverter uses a two-stage approach; the first stage is an analog multipath/ multi-phase harmonic rejection mixer followed by a second stage providing additional harmonic rejection based on blind adaptive interference canceling in the discrete-time domain. The aim is to show its functional operation and to find practical performance limitations. Measurement results show that the harmonic rejection of the downconverter is insensitive to frontend nonlinearities and LO phase noise. The canceler cannot cope with DC offsets. The DC offsets are removed by highpass filters. The signal paths used to obtain an estimate of the interference must\ud be designed to provide as much attenuation of the desired signal as possible

    A Blind Interference Canceling Technique for Two-Stage Harmonic Rejection in Down-mixers

    Get PDF
    This paper presents practical experiments on a harmonic rejection down-mixer, which offers up to 75 dB of harmonic rejection, without an RF filter. The down-mixer uses a two-stage approach; the first stage is an analog multi-path/multiphase harmonic rejection mixer followed by a second stage providing additional harmonic rejection based on blind adaptive interference canceling in the discrete-time domain. The aim is to show its functional operation. The canceler cannot cope with DC offsets. The DC offsets are removed by highpass filters. The signal paths used to obtain an estimate of the interference must be designed to provide as much attenuation of the desired signal as possible. Front-end nonlinearities and DC offsets are discussed

    A CMOS spectrum analyzer frontend for cognitive radio achieving +25dBm IIP3 and −169 dBm/Hz DANL

    Get PDF
    A dual RF-receiver preceded by discrete-step attenuators is implemented in 65nm CMOS and operates from 0.3– 1.0 GHz. The noise of the receivers is reduced by cross-correlating the two receiver outputs in the digital baseband, allowing attenuation of the RF input signal to increase linearity. With this technique a displayed average noise level below -169 dBm/Hz is obtained with +25 dBm IIP3, giving a spurious-free dynamic range of 89 dB in 1 MHz resolution bandwidth

    A Two-stage approach to harmonic rejection mixing using blind interference cancelling

    Get PDF
    Current analog harmonic rejection mixers typically provide 30–40 dB of harmonic rejection, which is often not sufficient. We present a mixed analog-digital approach to harmonic rejection mixing that uses a digital interference canceler to reject the strongest interferer. Simulations indicate that, given a practical RF scenario, the digital canceler is able to improve the signal-to-interference ratio by 30–45 dB

    X-Band Front-end Module of FMCW RADAR for Collision Avoidance Application

    Get PDF
    A frequency modulated continuous wave (FMCW) radar front-end module is developed as a laboratory prototype of NECTEC, NSTDA. The performance of proposed prototype is verified by the reflection test of aluminum plates in outdoor environment. The frequency domain data from a spectrum analyzer was measured at every 20 meters of the distance between the front-end prototype and the aluminum plate until the maximum distance of 200 meters is reached. The calculation of the beat frequencies at different range of reflecting aluminum plates is presented. The maximum error between measured and calculated distances does not exceed 5.02 percent. The effect of different radar cross section (RCS) of reflecting objects of 0.3, 0.8 and 1.5 m2 plate area are analyzed. The low value of different received power ratio per one squared meter unit area of 0.66 percent is obtained to prove the consistency of reflected power level over the different size of object under test.

    Design of RF Frontend Unit to Avoid Intermodulation Using Arduino Uno

    Get PDF
    Designing a Radio Frequency (RF) front end is vastly realized for determining the level of integration that is required in the signal chain inside the receivers to be idealistic. The receivers is susceptible to harmful intermodulation due to nonlinear RF front ends. In this paper, intermodulation distortion is avoided by a selective prototype hardware design of RF fort end which is connected with the Arduino Uno for controlling the power levels. The measurements are tested out as a result of injecting a signals within x-band frequencies and chosen different power levels are assumed. These measurements is revealed an accepted results for the intermodulation avoidance

    Widely Tunable RF Frontend for the Universal Software Radio Peripheral: the MMP9000

    Get PDF
    This report presents the design and construction of a wideband transceiver in the context of an RF frontend for a software radio development platform, the Universal Software Radio Peripheral (USRP). This daughterboard is designed to operate at either full or half duplex modes over a frequency range of 100 MHz to 1.3 GHz or greater. It is fully integrated with both the USRP and GNU Radio, a free software radio development toolkit, to fully control the daughterboard via software

    Radio over fiber enabling PON fronthaul in a two-tiered cloud

    Get PDF
    Avec l’avĂšnement des objets connectĂ©s, la bande passante nĂ©cessaire dĂ©passe la capacitĂ© des interconnections Ă©lectriques et interface sans fils dans les rĂ©seaux d’accĂšs mais aussi dans les rĂ©seaux coeurs. Des systĂšmes photoniques haute capacitĂ© situĂ©s dans les rĂ©seaux d’accĂšs utilisant la technologie radio sur fibre systĂšmes ont Ă©tĂ© proposĂ©s comme solution dans les rĂ©seaux sans fil de 5e gĂ©nĂ©rations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources rĂ©seau, le cloud computing et des services de stockage sont en cours de dĂ©ploiement. De cette maniĂšre, les ressources centralisĂ©es pourraient ĂȘtre diffusĂ©es de façon dynamique comme l’utilisateur final le souhaite. Chaque Ă©change nĂ©cessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des rĂ©seaux et de les dĂ©finir de façon logicielle. Les amplificateurs Ă  semi-conducteurs rĂ©flectifs (RSOA) sont une technologie clĂ© au niveau des ONU(unitĂ© de communications optiques) dans les rĂ©seaux d’accĂšs passif (PON) Ă  fibres. Nous examinons ici la possibilitĂ© d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numĂ©rique sur un PON. La radio sur fibres peut ĂȘtre facilement rĂ©alisĂ©e grĂące Ă  l’insensibilitĂ© a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modĂšle OSI. Les interactions entre la couche physique et la commutation de rĂ©seaux peuvent ĂȘtre faites par l’ajout d’un contrĂŽleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation rĂ©seau pourrait ainsi bĂ©nĂ©ficier d’une couche optique flexible grĂące des ressources rĂ©seau dynamique et adaptĂ©e. Dans ce mĂ©moire, nous Ă©tudions un systĂšme disposant d’une couche physique optique basĂ© sur un RSOA. Celle-ci nous permet de façon simultanĂ©e un envoi de signaux sans fil et le transport de signaux numĂ©rique au format modulation tout ou rien (OOK) dans un systĂšme WDM(multiplexage en longueur d’onde)-PON. Le RSOA a Ă©tĂ© caractĂ©risĂ© pour montrer sa capacitĂ© Ă  gĂ©rer une plage dynamique Ă©levĂ©e du signal sans fil analogique. Ensuite, les signaux RF et IF du systĂšme de fibres sont comparĂ©s avec ses avantages et ses inconvĂ©nients. Finalement, nous rĂ©alisons de façon expĂ©rimentale une liaison point Ă  point WDM utilisant la transmission en duplex intĂ©gral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mĂ©langeurs RF dans la liaison montante, nous avons rĂ©solu le problĂšme d’incompatibilitĂ© avec le systĂšme sans fil basĂ© sur le TDD (multiplexage en temps duplexĂ©).With the advent of IoT (internet of things) bandwidth requirements triggered by aggregated wireless connections have exceeded the fundamental limitation of copper and microwave based wireless backhaul and fronthaul networks. High capacity photonic fronthaul systems employing radio over fiber technology has been proposed as the ultimate solution for 5G wireless system. To maximize utilization of server and network resources, cloud computing and storage based services are being deployed. In this manner, centralized resources could be dynamically streamed to the end user as requested. Since on demand resource provision requires the orchestration between the server and network infrastructure, a smart photonic (physical layer)PHY enabled cloud is foreseen to support network virtualization and software defined network. RSOAs (Reflective Semiconductor Optical Amplifier) are being investigated as key enablers of the colorless ONU(Optical Network Unit) solution in PON (Passive Optical Network). We examine the use of an RSOA in radio over fiber systems to transport wireless signals over a PON simultaneously with digital data. Radio over fiber systems with flexible wavelength allocation could be achieved thanks to the colorless operation of the RSOA and wavelength reuse technique. The wavelength flexibility in optical PHY are inline with the paradigm of software defined network (SDN) in OSI layer 2/3. The orchestration between optical PHY and network switching fabric could be realized by extending the SDN controller to include optical layer handlers. Network virtualization could also benefit from the flexible optical PHY through dynamic and tailored optical network resource provision. In this thesis, we investigate an optical PHY system based on RSOA enabling both analog wireless signal and digital On-Off Keying (OOK) transportation within WDM (Wavelength Division Multiplexing) PON architecture. The RSOA has been characterized to show its potential ability to handle high dynamic range analog wireless signal. Then the RF and IF radio over fiber scheme is compared with its pros and cons. Finally we perform the experiment to shown a point to point WDM link with full duplex transmission of analog WiFi signal with downlink OOK signal. By introducing two RF mixer in the uplink, we have solved the incompatible problem with TDD (Time Division Duplex) based wireless system
    • 

    corecore