163 research outputs found

    Unobtrusive cot side sleep stage classification in preterm infants using ultra-wideband radar

    Get PDF
    Background: Sleep is an important driver of development in infants born preterm. However, continuous unobtrusive sleep monitoring of infants in the neonatal intensive care unit (NICU) is challenging.Objective: To assess the feasibility of ultra-wideband (UWB) radar for sleep stage classification in preterm infants admitted to the NICU.Methods: Active and quiet sleep were visually assessed using video recordings in 10 preterm infants (recorded between 29 and 34 weeks of postmenstrual age) admitted to the NICU. UWB radar recorded all infant's motions during the video recordings. From the baseband data measured with the UWB radar, a total of 48 features were calculated. All features were related to body and breathing movements. Six machine learning classifiers were compared regarding their ability to reliably classify active and quiet sleep using these raw signals.Results: The adaptive boosting (AdaBoost) classifier achieved the highest balanced accuracy (81%) over a 10-fold cross-validation, with an area under the curve of receiver operating characteristics (AUC-ROC) of 0.82.Conclusions: The UWB radar data, using the AdaBoost classifier, is a promising method for non-obtrusive sleep stage assessment in very preterm infants admitted to the NICU

    Real-time embedded eye detection system

    Get PDF
    The detection of a person’s eyes is a basic task in applications as important as iris recognition in biometric identification or fatigue detection in driving assistance systems. Current commercial and research systems use software frameworks that require a dedicated computer, whose power consumption, size, and price are significantly large. This paper presents a hardware-based embedded solution for eye detection in real-time. From an algorithmic point-of-view, the popular Viola-Jones approach has been redesigned to enable highly parallel, single-pass image-processing implementation. Synthesized and implemented in an All-Programmable System-on-Chip (AP SoC), this proposal allows us to process more than 88 frames per second (fps), taking the classifier less than 2 ms per image. Experimental validation has been successfully addressed in an iris recognition system that works with walking subjects. In this case, the prototype module includes a CMOS digital imaging sensor providing 16 Mpixels images, and it outputs a stream of detected eyes as 640 × 480 images. Experiments for determining the accuracy of the proposed system in terms of eye detection are performed in the CASIA-Iris-distance V4 database. Significantly, they show that the accuracy in terms of eye detection is 100%.This work has been partially developed within the project RTI2018-099522-B-C4X, funded by the Gobierno de España and FEDER funds, and the ARMORI project (CEIATECH-10) funded by the University of Málaga. Portions of the research in this paper use the CASIA-Iris V4 collected by the Chinese Academy of Sciences - Institute of Automation (CASIA)

    Exploring Human Vision Driven Features for Pedestrian Detection

    Full text link
    Motivated by the center-surround mechanism in the human visual attention system, we propose to use average contrast maps for the challenge of pedestrian detection in street scenes due to the observation that pedestrians indeed exhibit discriminative contrast texture. Our main contributions are first to design a local, statistical multi-channel descriptorin order to incorporate both color and gradient information. Second, we introduce a multi-direction and multi-scale contrast scheme based on grid-cells in order to integrate expressive local variations. Contributing to the issue of selecting most discriminative features for assessing and classification, we perform extensive comparisons w.r.t. statistical descriptors, contrast measurements, and scale structures. This way, we obtain reasonable results under various configurations. Empirical findings from applying our optimized detector on the INRIA and Caltech pedestrian datasets show that our features yield state-of-the-art performance in pedestrian detection.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Respiratory Pattern Analysis for COVID-19 Digital Screening Using AI Techniques

    Get PDF
    Corona Virus (COVID-19) is a highly contagious respiratory disease that the World Health Organization (WHO) has declared a worldwide epidemic. This virus has spread worldwide, affecting various countries until now, causing millions of deaths globally. To tackle this public health crisis, medical professionals and researchers are working relentlessly, applying different techniques and methods. In terms of diagnosis, respiratory sound has been recognized as an indicator of one’s health condition. Our work is based on cough sound analysis. This study has included an in-depth analysis of the diagnosis of COVID-19 based on human cough sound. Based on cough audio samples from crowdsourced COVID data, we develop an audio-based framework, deploying traditional Machine Learning (ML), Resampling multiclass ML approach, Cost-Sensitive Multiclass ML, and Multiclass Deep Learning (DL) approaches for COVID-19 digital screening. Our experimental results indicate that the resampling Multiclass ML approach shows the best result for COVID-19 digital prescreening with an AUC of 78.77%. To the best of our knowledge, this is the first COVID-19 detection tool that uses such diverse crowdsourced and largest physician annotated COVID data that uses patients’ cough sound data to predict the presence of COVID-19 in those patients by applying multiple multiclass data balance techniques for AI algorithms. Our proposed novel framework and the developed tool will assist in a) automating COVID-19 digital pre-screening, b) making the COVID test more accessible and cost-effective, c) helping to detect an infected individual before a physical COVID test, and d) reducing the risk of infecting others

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate

    Multimedia Decision Fusion

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Efficient Pedestrian Detection in Urban Traffic Scenes

    Get PDF
    Pedestrians are important participants in urban traffic environments, and thus act as an interesting category of objects for autonomous cars. Automatic pedestrian detection is an essential task for protecting pedestrians from collision. In this thesis, we investigate and develop novel approaches by interpreting spatial and temporal characteristics of pedestrians, in three different aspects: shape, cognition and motion. The special up-right human body shape, especially the geometry of the head and shoulder area, is the most discriminative characteristic for pedestrians from other object categories. Inspired by the success of Haar-like features for detecting human faces, which also exhibit a uniform shape structure, we propose to design particular Haar-like features for pedestrians. Tailored to a pre-defined statistical pedestrian shape model, Haar-like templates with multiple modalities are designed to describe local difference of the shape structure. Cognition theories aim to explain how human visual systems process input visual signals in an accurate and fast way. By emulating the center-surround mechanism in human visual systems, we design multi-channel, multi-direction and multi-scale contrast features, and boost them to respond to the appearance of pedestrians. In this way, our detector is considered as a top-down saliency system. In the last part of this thesis, we exploit the temporal characteristics for moving pedestrians and then employ motion information for feature design, as well as for regions of interest (ROIs) selection. Motion segmentation on optical flow fields enables us to select those blobs most probably containing moving pedestrians; a combination of Histogram of Oriented Gradients (HOG) and motion self difference features further enables robust detection. We test our three approaches on image and video data captured in urban traffic scenes, which are rather challenging due to dynamic and complex backgrounds. The achieved results demonstrate that our approaches reach and surpass state-of-the-art performance, and can also be employed for other applications, such as indoor robotics or public surveillance. In this thesis, we investigate and develop novel approaches by interpreting spatial and temporal characteristics of pedestrians, in three different aspects: shape, cognition and motion. The special up-right human body shape, especially the geometry of the head and shoulder area, is the most discriminative characteristic for pedestrians from other object categories. Inspired by the success of Haar-like features for detecting human faces, which also exhibit a uniform shape structure, we propose to design particular Haar-like features for pedestrians. Tailored to a pre-defined statistical pedestrian shape model, Haar-like templates with multiple modalities are designed to describe local difference of the shape structure. Cognition theories aim to explain how human visual systems process input visual signals in an accurate and fast way. By emulating the center-surround mechanism in human visual systems, we design multi-channel, multi-direction and multi-scale contrast features, and boost them to respond to the appearance of pedestrians. In this way, our detector is considered as a top-down saliency system. In the last part of this thesis, we exploit the temporal characteristics for moving pedestrians and then employ motion information for feature design, as well as for regions of interest (ROIs) selection. Motion segmentation on optical flow fields enables us to select those blobs most probably containing moving pedestrians; a combination of Histogram of Oriented Gradients (HOG) and motion self difference features further enables robust detection. We test our three approaches on image and video data captured in urban traffic scenes, which are rather challenging due to dynamic and complex backgrounds. The achieved results demonstrate that our approaches reach and surpass state-of-the-art performance, and can also be employed for other applications, such as indoor robotics or public surveillance
    corecore