203 research outputs found

    Current reuse topology in UWB CMOS LNA

    Get PDF
    Non

    Design And Analysis Of Low Noise Amplifier Using Cadence

    Get PDF
    Low Noise Amplifier also known as LNA is one of the most significant component for application in wireless communication system. It is a very important part in RF receiver because it can reduce noise of gain by the amplifier when the noise of the amplifier is received directly. The low noise amplifier has been designed to get the better performance by follow the requirement in this new era consists of high gain, low noise figure, lower power consumption, small chip area, low cost and good input and output matching. In this research, a LNA schematic consists of three stages which are common gate amplifier, common drain amplifier and active inductor is designed to mitigate this constraint. Common gate and common drain are used for input and output stages in every LNA. Both are also used for excellent input and output matching and have a potential to get a lower noise whereas for active inductor, it is used to obtain the lower power consumption and to reduce the chip size in layout design. The results show that the proposed LNA is able to achieve the best performance with a simulated gain of 14.7dB, extremely lower power consumption of 0.8mW, noise figure of 7dB and small chip area 0.26mm². Consequently, this modified LNA is appropriate for low-voltage applications especially in wireless communication system

    A Discrete-Time Mixing Receiver Architecture with Wideband Harmonic Rejection

    Get PDF
    A discrete-time mixing architecture for software-defined radio receivers exploits 8 RF voltage oversampling followed by charge-domain weighting to achieve 40dB 3rd and 5th harmonic rejection without channel bandwidth limitations. Noise folding is also reduced by 3dB. A zero-IF downconverter chip in 65nm CMOS can receive RF signals up to 900MHz, with NFmin=12dB, IIP3=11dBm at <20mW power consumption including multi-phase clock generation

    An ultra-wideband SiGe BiCMOS LNA for w-band applications

    Get PDF
    This article presents the design steps and implementation of a W-band ultra-wideband low noise amplifier (LNA) for both automotive and imaging applications. Three amplifiers based on common-emitter topology with different configurations are manufactured using IHP 0.13 mu m SiGe BiCMOS 300/500 GHz (f(t)/f(max)) SG13G2 technology. A three-stage single-ended structure is proposed for ultra-wideband imaging purposes. As the results are analyzed, this 0.2 mm(2) LNA can operate in a 25 GHz of measured 3-dB bandwidth in W-band with 21 dB peak gain and 4.9 dB average noise figure using 1.5 V supply voltage. It consumes 50 mW of power in the edge operation conditions and the output 1 dB compression point is found as -4 dBm. To the authors' knowledge, this chip achieves one of the best overall performances compared to other W-band LNAs

    Complementary High-Speed SiGe and CMOS Buffers

    Get PDF

    A Review of CMOS Low Noise Amplifier for UWB System

    Get PDF
    A number of CMOS low noise amplifier (LNA) design for ultra-wideband (UWB) application had been produced with a various topology and techniques from year 2004 to 2016. The performance of LNA such as frequency bandwidth, noise figure, input and output matching and gain depend with the choice of the topology and technique used. Among the techniques introduced are current reuse, common source, resistive feedback, common gate, Chebyshev filter, distributed amplifier, folded cascade and negative feedback. This paper presents the collection of review about design of low noise amplifier used for UWB application in term of topology circuit. Thus, the problem and limitation of the CMOS LNA for UWB application are reviewed. Furthermore, recent developments of CMOS LNAs are examined and a comparison of the performance criteria of various topologies is presented

    A 0.2-to-2.0GHz 65nm CMOS Receiver without LNA achieving >11dBm IIP3 and <6.5 dB NF

    Get PDF
    Spurious-free dynamic range (SFDR) is a key specification of radio receivers and spectrum analyzers, characterizing the maximum distance between signal and noise+distortion. SFDR is limited by the linearity (intercept point IIP3 mostly, sometimes IIP2) and the noise floor. As receivers already have low noise figure (NF) there is more room for improving the SFDR by increasing the linearity. As there is a strong relation between distortion and voltage swing, it is challenging to maintain or even improve linearity intercept points in future CMOS processes with lower supply voltages. Circuits can be linearized with feedback but loop gain at RF is limited [1]. Moreover, after LNA gain, mixer linearity becomes even tougher. If the amplification is postponed to IF, much more loop gain is available to linearize the amplifier. This paper proposes such an LNA-less mixer-first receiver. By careful analysis and optimization of a passive mixer core [2,3] for low conversion loss and low noise folding it is shown that it is possible to realize IIP3≫11dBm and NF≪6.5dB, i.e. a remarkably high SFDR≫79dB in 1MHz bandwidth over a decade of RF frequencies

    Digitally-Assisted RF IC Design Techniques for Reliable Performance

    Get PDF
    Semiconductor industries have competitively scaled down CMOS devices to attain benefits of low cost, high performance, and high integration density in digital integrated circuits. On the other hand, deep scaled technologies inextricably accompany a large process variation, supply voltage scaling, and reduction in breakdown voltages of transistors. When it comes to RF/analog IC design, CMOS scaling adversely affects its reliability due to large performance variation and limited linearity. For addressing the issues related to variations and linearity, this research proposes the following digitally-assisted RF circuit design techniques: self-calibration system for RF phase shifters and wide dynamic range LNAs. Due to PVT variations in scaled technologies, RF phase shifter design becomes more challenging with device scaling. In the proposed self-calibration topology, we devised a novel phase sensing method and a pulsewidth-to-digital converter. The feedback controller is also designed in digital domain, which is robust to PVT variations. These unique techniques enable a sensing/control loop tolerant to PVT variations. The self-calibration loop was applied to a 7 to 13GHz phase shifter. With the calibration, the estimated phase error is less than 2 degrees. To overcome the linearity issue in scaled technologies, a digitally-controlled dual-mode LNA design is presented. A narrowband (5.1GHz) and a wideband (0.8 to 6GHz) LNA can be toggled between high-gain and high-linearity modes by digital control bits according to the input signal power. A compact design, which provides negligible performance degradation by additional circuitry, is achieved by sharing most of the components between the two operation modes. The narrowband and the wideband LNA achieves an input-referred P1dB of -1.8dBm and +4.2dBm, respectively
    • …
    corecore