2,607 research outputs found

    Load flow studies on stand alone microgrid system in Ranau, Sabah

    Get PDF
    This paper presents the power flow or load flow analysis of Ranau microgrid, a standalone microgrid in the district of Ranau,West Coast Division of Sabah. Power flow for IEEE 9 bus also performed and analyzed. Power flow is define as an important tool involving numerical analysis applied to power system. Power flow uses simplified notation such as one line diagram and per-unit system focusing on voltages, voltage angles, real power and reactive power. To achieved that purpose, this research is done by analyzing the power flow analysis and calculation of all the elements in the microgrid such as generators, buses, loads, transformers, transmission lines using the Power Factory DIGSilent 14 software to calculate the power flow. After the analysis and calculations, the results were analysed and compared

    Design of an integrated system for on-line test and diagnosis of rotary actuators

    Get PDF
    In this paper, the design of an on-chip Fault Detection and Diagnosis System for Condition Based Maintenance of electromechanical actuators is presented. The proposed system is based on signal processing algorithms integrated in a customized Application Specific Integrated Circuit (ASIC). The design was synthesized using a 90nm CMOS standard cell library. As a case study, post-synthesis simulations were performed using signals acquired from a real electromechanical valve, using torque and vibration sensors considering both fault-free and defective situations for the actuator. Results show the effectiveness of the system in performing real-time fault detection and identification, with low power consumption and low silicon area utilization

    Emerging I&C Technologies Under the Shifting Regulatory Environment in South Korea

    Get PDF
    The role of Probabilistic Safety Assessment (PSA) has been supplementary and Risk-Informed Applications (RIAs) based on the insight from PSA has also been utilized limitedly in the licensing process for Nuclear Power Plants (NPPs) in South Korea. However, as the technical significance of PSA is getting increased, PSA has become a mandatory part of Safety Analysis Reports and Periodic Safety Review. It is worthwhile to highlight the role of emerging Instrumentation and Control (I&C) technologies including human-machine interface (HMI) in developing more credible and realistic PSA models. Particularly, it is expected that the information technology (i.e. software) embedded in digital I&C can adjust over- and under conservatism in analyzing risk. In this study, authors proposed the cases which would be able to significantly reduce risk if advanced I&C supported by information technologies is applied. In regard, the several enabling techniques and their effects are proposed. In order to improve the commercial competitiveness of NPPs, the need of collaboration and synergetic outcome of I&C, HMI and PSA should be emphasized

    A Review of Prognostics and Health Management Applications in Nuclear Power Plants

    Get PDF
    The US operating fleet of light water reactors (LWRs) is currently undergoing life extensions from the original 40-year license to 60 years of operation. In the US, 74 reactors have been approved for the first round license extension, and 19 additional applications are currently under review. Safe and economic operation of these plants beyond 60 years is now being considered in anticipation of a second round of license extensions to 80 years of operation.Greater situational awareness of key systems, structures, and components (SSCs) can provide the technical basis for extending the life of SSCs beyond the original design life and supports improvements in both safety and economics by supporting optimized maintenance planning and power uprates. These issues are not specific to the aging LWRs; future reactors (including Generation III+ LWRs, advanced reactors, small modular reactors, and fast reactors) can benefit from the same situational awareness. In fact, many SMR and advanced reactor designs have increased operating cycles (typically four years up to forty years), which reduce the opportunities for inspection and maintenance at frequent, scheduled outages. Understanding of the current condition of key equipment and the expected evolution of degradation during the next operating cycle allows for targeted inspection and maintenance activities. This article reviews the state of the art and the state of practice of prognostics and health management (PHM) for nuclear power systems. Key research needs and technical gaps are highlighted that must be addressed in order to fully realize the benefits of PHM in nuclear facilities

    Data Processing for IoT in Oil and Gas Refineries

    Get PDF
    This paper summarizes and gives examples of the using of IoT in Industry 4.0, especially in Oil and Gas Refineries. Industry 4.0 and Industrial Internet of Things (IIoT) technologies are driving digitalization driven by software and data solutions in many areas, particularly in industrial automation and manufacturing systems. Global refineries are currently all heavily instrumented, and process regulated in real-time to the millisecond. To meet the ever-increasing needs of operational demands, SCADA, Distributed Control Systems and Programmable Logic Controllers (DCS & PLCs) have grown significantly. On the other hand, certain assets and operations in a refinery are still not being monitored or evaluated in real-time. If an error occurs that causes production to be hampered, the company must bear large losses even though production stops in just a matter of minutes. This is one of the reasons why the oil and gas sector is starting to implement the Internet of Things (IoT). The overall aim of this paper is to give and summarize several papers to provide solutions for a simple process monitoring system that would enable process operators to identify any sources of abnormality quickly and easily in the process. A system is being made so that it can be accessed and transmit data remotely via a computer network and will display conditions in real-time without being limited by distance, space, and time. This will allow all previously disconnected assets and processes to be linked and monitored in real-time in a simpler, cost-effective, and easy-to-implement manner

    Proactive computing in process monitoring:Information agents for operator support

    Get PDF
    While automation systems can track thousands of measurements it is still up to human process operators to determine the operational situation of the controlled process, particularly in abnormal situations. To fully exploit the computing power of embedded processors and to release humans from simple data harvesting activities, the concept of proactive computing tries to exploit the strengths of both man and machine. Proactive features can be implemented using intelligent agent technology, enabling humans to move from simple interaction with computers into supervisory tasks. Autonomous information agents can handle massive amounts of heterogeneous data. They perform tedious tasks of information retrieving, combining and monitoring on the behalf of their users. This paper presents a multi-agent-based architecture for process automation, which aims to support process operators in their monitoring activities. The approach is tested with a scenario inspired by a real-world industrial challenge. (24 refs.

    Next generation intelligent completions for multi-stacked brownfield in Malaysia

    Get PDF
    Multi-stacked brownfield in Malaysia is known to have zonal contrast reservoir pressure and water cut. Commingled production without any flow control such as conventional on-off sliding sleeve will induce cross flow of production from a high pressure reservoir to lower pressure reservoir which disables optimum oil production. Having high zonal water cut contrast will cause early or excessive water production translates to deferred oil production. To pro-actively prevent these occurrences, adaptation of intelligent completion components such as Permanent Downhole Gauge (PDG) and surface-controlled Flow Control Valve (FCV) can be used. Downhole FCV choke is designed to cater for the dynamic changes of reservoir properties predicted over well life. In order to standardize the FCV choke sizing by well or by campaign, the choke sizing will be averaged to fit for all layers which is not the ultimate optimized design for maximum oil production. Latest in market today, electrical driven infinite position FCV is the solution to conventional hydraulic actuated FCV. Having infinite position enables optimized choke sizing for all reservoir layers and flexible to tackle uncertainties and dynamic changes of reservoir properties over time which enables the ultimate optimum oil production and water cut reduction. Besides choke sizing, deployment method and operating method also contribute to installation and operating efficiency. Conventional multi-position FCVs in market today are either fully hydraulic operated or electro-hydraulic operated which require hydraulic pump units at surface to enable pressuring up hydraulic control lines to change the position of FCV. It is also time consuming during deployment due to the requirement of electrical splicing, hydraulic splicing and FCV actuation sequence. Infinite position FCV is electrically operated using single downhole cable that can be multi-dropped to more than 25 FCV which reduces deployment time. With WellWatcher Advisor software that provides real time optimization features, operating efficiency is improved significantly with infinite position FCV as compared to conventional multi-position FCV and on-off sliding sleeve

    Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand

    Get PDF
    Acknowledgments The authors would like to thank the anonymous reviewers for their constructive comments and feedback.Peer reviewedPostprin
    corecore