2,468 research outputs found

    A Novel Artificial Pancreas: Energy Efficient Valveless Piezoelectric Actuated Closed-Loop Insulin Pump for T1DM

    Get PDF
    The objective of this work is to develop a closed-loop controlled insulin pump to keep the blood glucose level of Type 1 diabetes mellitus (T1DM) patients in the desired range. In contrast to the existing artificial pancreas systems with syringe pumps, an energy-efficient, valveless piezoelectric pump is designed and simulated with different types of controllers and glucose-insulin models. COMSOL Multiphysics is used for piezoelectric-fluid-structural coupled 3D finite element simulations of the pump. Then, a reduced-order model (ROM) is simulated in MATLAB/Simulink together with optimal and proportional-integral-derivative (PID) controllers and glucose-insulin models of Ackerman, Bergman, and Sorensen. Divergence angle, nozzle/diffuser diameters, lengths, chamber height, excitation voltage, and frequency are optimized with dimensional constraints to achieve a high net flow rate and low power consumption. A prototype is manufactured and experimented with different excitation frequencies. It is shown that the proposed system successfully controls the delivered insulin for all three glucose-insulin models

    Activity Report: Automatic Control 2012

    Get PDF

    Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia

    Get PDF
    In this paper, novel interval and general type-2 self-organizing fuzzy logic controllers (SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base in response to the controller's performance. The type-2 SOFLC uses type-2 fuzzy sets derived from real surgical data capturing patient variability in monitored physiological parameters during anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and comparative approaches for anesthesia control producing lower performance errors while using better defined rules in regulating anesthesia set points while handling the control uncertainties. The results are further supported by statistical analysis which also show that zSlices general type-2 SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance

    Activity Report: Automatic Control 2013

    Get PDF

    Design of Control System with Feedback Loop for a Pulsatile Pump

    Get PDF
    This paper describes the design and implementation of a closed-loop proportional, integral, differential (PID) control system for a custom in-house pulsatile pump apparatus for the University of Arkansas Biomedical Department. The control system is designed to control a MOONS’ PL34HD0L8500 hybrid stepper motor using a dual H-bridge motor driver network with four pulse-width modulated (PWM) inputs to drive a pulsatile pump apparatus at motor stepping frequencies up to 2kHz. The speed of the motor is controlled from a pressure profile transmitted from an external source over RS-232 communication that specifies the motor speed, number of datapoints, and an array of pressure data. Data will be measured from the pump using pressure, flow, and temperature sensors that will output analog data and be read to the control board using analog-to-digital converters (ADCs). A PID controller will be used to match the speed of the motor to the control data by calculating the error between the sensor outputs and the desired profile. The circuit board is separated into two sections for the control board and motor circuit to isolate the 68V and motor circuity from the rest of the control board circuitry. The control system circuitry was tested, and while the control board systems were found to be functional, the motor circuit was found inefficient due to the high L/R time constant of the motor, resulting in greatly reduced speed and torque. A new chopper driver design was proposed to solve this issue and simulations conducted through MATLAB Simulink to prove the feasibility of the design

    Trick or Heat? Manipulating Critical Temperature-Based Control Systems Using Rectification Attacks

    Full text link
    Temperature sensing and control systems are widely used in the closed-loop control of critical processes such as maintaining the thermal stability of patients, or in alarm systems for detecting temperature-related hazards. However, the security of these systems has yet to be completely explored, leaving potential attack surfaces that can be exploited to take control over critical systems. In this paper we investigate the reliability of temperature-based control systems from a security and safety perspective. We show how unexpected consequences and safety risks can be induced by physical-level attacks on analog temperature sensing components. For instance, we demonstrate that an adversary could remotely manipulate the temperature sensor measurements of an infant incubator to cause potential safety issues, without tampering with the victim system or triggering automatic temperature alarms. This attack exploits the unintended rectification effect that can be induced in operational and instrumentation amplifiers to control the sensor output, tricking the internal control loop of the victim system to heat up or cool down. Furthermore, we show how the exploit of this hardware-level vulnerability could affect different classes of analog sensors that share similar signal conditioning processes. Our experimental results indicate that conventional defenses commonly deployed in these systems are not sufficient to mitigate the threat, so we propose a prototype design of a low-cost anomaly detector for critical applications to ensure the integrity of temperature sensor signals.Comment: Accepted at the ACM Conference on Computer and Communications Security (CCS), 201

    Design and Control of a Peristaltic Pump to Simulate Left Atrial Pressure in a Conductive Silicone Model

    Get PDF
    According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model for use in modeling catheter ablation. Using repetitive control, an average root-mean-square error of 0.038 psi was achieved
    • …
    corecore