1,543 research outputs found

    Design of an artificial neural network and feature extraction to identify arrhythmias from ECG

    Get PDF
    This paper presents a design of an artificial neural network (ANN) and feature extraction methods to identify two types of arrhythmias in datasets obtained through electrocardiography (ECG) signals, namely arrhythmia dataset (AD) and supraventricular arrhythmia dataset (SAD). No special ANN toolkit was used; instead, each neuron and necessary calculus were modeled and individually programmed. Thus, four temporal-based features are used: heart rate (HR), R-peaks root mean square (R-RMS), RR-peaks variance (RR-VAR), and QSR-complex standard deviation (QSR-SD). The network architecture presents four neurons in the input layer, eight in hidden layer and an output layer with two neurons. The proposed classification method uses the MIT-BIH Dataset (Massachusetts Institute of Technology-Beth Israel Hospital) for training, validation and execution or test phases. Preliminary results show the high efficiency of the proposed ANN design and its classification method, reaching accuracies between 98.76% and 98.91%, when in the identification of NSRD and arrhythmic ECG; and accuracies of 86.37% (AD) and 76.35% (SAD), when analyzing only classifications between both arrhythmias.info:eu-repo/semantics/acceptedVersio

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Recognition and Evaluation of Heart Arrhythmias via a General Sparse Neural Network

    Get PDF
    In clinical use, an electrocardiogram (ECG) is an essential medical tool for assessing heart arrhythmias. Thousands of human beings worldwide are affected by different cardiac problems nowadays. As a consequence, studying the features of the ECG pattern is critical for detecting a wide range of cardiac diseases. The ECG is a test which assesses the intensity of the electrical impulses in the circulatory system. In the present investigation, detection and examination of arrhythmias in the heart on the  system using GSNNs (General sparsed neural network classifier) can be carried out[1]. In this paper, the methodologies of support vector regression(SVR), neural mode decomposition(NMD), Artificial Neural Network (ANN), Support Vector Machine(SVM) and are examined. To assess the suggested structure, three distinct ECG waveform situations are chosen from the MIT-BIH arrhythmia collection. The main objective of this assignment is to create a simple, accurate, and simply adaptable approach for classifying the three distinct heart diseases chosen. The wavelet transform Db4 is used in the present paper to obtain several features from an ECG signal. The suggested setup was created using the MATLAB programme. The algorithms suggested are 98% accurate for forecasting cardiac arrhythmias, which is greater than prior techniques

    COMPUTER AIDED DIAGNOSIS OF VENTRICULAR ARRHYTHMIAS FROM ELECTROCARDIOGRAM LEAD II SIGNALS

    Get PDF
    In this work, we use computer aided diagnosis (CADx) to extract features from ECG signals and detect different types of cardiac ventricular arrhythmias including Ventricular Tachycardia (VT),Ventricular Fibrillation (VF), Ventricular Couplet (VC), and Ventricular Bigeminy (VB).Our methodology is unique in computing features of lower and higher order statistical parameters from six different data domains: time domain, Fourier domain, and four Wavelet domains (Daubechies, Coiflet, Symlet, and Meyer). These features proved to give superior classification performance, in general, regardless of the type of classifier used as compared with previous studies. However, Support Vector Machine (SVM) and Artificial Neural Network (ANN) classifiers got better performance than other classifiers tried including KNN and Naïve Bayes classifiers. Our unique features enabled classifiers to perform better in comparison with previous studies: for VT, 100% accuracy while best previous work got 95.8%, for VF, 100% accuracy while best previous work got 97.5%, for VC, 100% sensitivity while best previous work got 71.8%, and for VB, 100% sensitivity while best previous work got 84.6%

    Arrhythmia classification based on convolution neural network feature extraction and fusion

    Get PDF
    This study proposes a new automatic classification method of arrhythmias to assist doctors in diagnosing and treating arrhythmias. The convolution neural network is constructed to extract the features of ECG signals and wavelet components of QRS complex. The ECG signal features and wavelet features extracted by the network and the artificially extracted RR interval features are input to the full connection layer for fusion, and the softmax function is used to classify the beats in the output layer. The network is trained and tested using the mil lead data in MIT BIH arrhythmia database. The overall classification accuracy of this method is 98.12%, the average sensitivity is 87.32%, and the average positive predictive value is 90.37%. This method can quickly identify different types of arrhythmias, and has certain reference value for the application of computer-aided diagnosis of arrhythmias

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned
    • …
    corecore