3,685 research outputs found

    Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles

    Get PDF
    © 2016 IEEE. Steerable needles are a promising technology for minimally invasive surgery, as they can provide access to difficult to reach locations while avoiding delicate anatomical regions. However, due to the unpredictable tissue deformation associated with needle insertion and the complexity of many surgical scenarios, a real-time path planning algorithm with high update frequency would be advantageous. Real-time path planning for nonholonomic systems is commonly used in a broad variety of fields, ranging from aerospace to submarine navigation. In this letter, we propose to take advantage of the architecture of graphics processing units (GPUs) to apply fractal theory and thus parallelize real-time path planning computation. This novel approach, termed adaptive fractal trees (AFT), allows for the creation of a database of paths covering the entire domain, which are dense, invariant, procedurally produced, adaptable in size, and present a recursive structure. The generated cache of paths can in turn be analyzed in parallel to determine the most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints, as well as constraints in the space of states of any complexity or number, is intrinsic to the AFT approach, rendering it highly versatile. Three-dimensional (3-D) simulations applied to needle steering in neurosurgery show that our approach can successfully compute paths in real-time, enabling complex brain navigation

    MR Safe Robotic Manipulator for MRI-Guided Intracardiac Catheterization

    No full text
    This paper introduces a robotic manipulator to realize robot-assisted intracardiac catheterization in magnetic resonance imaging (MRI) environment. MRI can offer high-resolution images to visualize soft tissue features such as scars or edema. We hypothesize that robotic catheterization, combined with the enhanced monitoring of lesions creation using MRI intraoperatively, will significantly improve the procedural safety, accuracy, and effectiveness. This is designed particularly for cardiac electrophysiological (EP) intervention, which is an effective treatment of arrhythmia. We present the first MR Safe robot for intracardiac EP intervention. The robot actuation features small hysteresis, effective force transmission, and quick response, which has been experimentally verified for its capability to precisely telemanipulate a standard clinically used EP catheter. We also present timely techniques for real-time positional tracking in MRI and intraoperative image registration, which can be integrated with the presented manipulator to im prove the performance of teleoperated robotic catheterization

    Modelling the deformation of biologically inspired flexible structures for needle steering

    Get PDF
    Recent technical advances in minimally invasive surgery have been enabled by the development of new medical instruments and technologies. To date, the vast majority of mechanisms used within a clinical context are rigid, contrasting with the compliant nature of biological tissues. The field of robotics has seen an increased interest in flexible and compliant systems, and in this paper we investigate the behaviour of deformable multi-segment structures, which take their inspiration from the ovipositor design of parasitic wood wasps. These configurable structures have been shown to steer through highly compliant substrates, potentially enabling percutaneous access to the most delicate of tissues, such as the brain. The model presented here sheds light on how the deformation of the unique structure is related to its shape, and allows comparison between different potential designs. A finite element study is used to evaluate the proposed model, which is shown to provide a good fit (root-mean-square deviation 0.2636 mm for 4-segment case). The results show that both 3-segment and 4-segment designs are able to achieve deformation in all directions, however the magnitude of deformation is more consistent in the 4-segment case

    Coexistence and compatibility of martensite reorientation and phase transformation in high-frequency magnetic-field-induced deformation of Ni-Mn-Ga single crystal

    Get PDF
    High-frequency magnetic-field-induced Martensite Reorientation (MR) is one of the most important advantages of Ferromagnetic Shape Memory Alloys (FSMAs), but its stability is threatened by dissipation heat accumulation (“self-heating”) of cyclic frictional twin boundary motion, which can cause temperature-induced Phase Transformation (PT) and reduce the output strain amplitude significantly. In this paper, the interaction of the temperature-induced PT and the magnetic-field-induced MR during high-frequency magnetic actuation on FSMA is studied with in-situ observations of local-strain evolution in conjunction with microstructure compatibility analysis. Based on the nominal strain and temperature responses and the corresponding local-strain maps, it is revealed that, when the temperature-induced PT takes place during the high-frequency field-induced MR, the specimen is divided into three zones: non-active austenite zone (with a constant deformation), active martensite zone (with cyclic deformations of MR) and buffering needle zone (interfacial zone) with a fine-needle-twin structure which plays an important role in maintaining the compatibility between austenite and martensite zones with different cyclic deformations during the dynamic loading. A novel mechanism is revealed that, under the magnetic actuation with changing ambient airflow, the “self-heating” temperature-driven phase boundary motion and the magnetic-field-driven twin boundary motion can coexist, because the specimen needs to self-organize the different phases/variants to satisfy all the thermo-magneto-mechanical boundary conditions. Taking advantage of this mechanism, the volume fractions of austenite and martensite zones can be adjusted with changing ambient airflow velocity, which provides an effective way to tune the nominal output strain amplitude (from 1% to 6% in the current study) while the working temperature is kept almost constant (around Ms and Mf)

    Methods for interventional magnetic resonance imaging

    Get PDF
    This thesis has as its central aim to demonstrate, develop, discuss and promote new methods and technology for improving interventional low field magnetic resonance imaging. The work addresses problems related to accurate localization of minimally invasive surgical tools by describing novel devices and improvements to prior art techniques, such as optical tracking. In addition to instrument guidance, ablative treatment of liver tumours is discussed in connection with low field temperature measurement and the work describes suitable sequences for qualitative temperature imaging. For instrument localization, a method utilising ex vivo Overhauser enhancement of a catheter like structure was demonstrated. An enhancement factor of 10 was achieved, proving that a substantial signal gain is possible through the use of ex vivo-enhanced liquid. Similarly, a method for biopsy needle tip tracking was developed; where the position of the tip was tracked with a signal from a miniaturized electron spin resonance sample and gradient pulses. At an update rate of 10 samples per second, the accuracy was measured to be better than ±2 mm within a homogeneous sphere of 300 mm. Optical tracking methods concentrated on new indications of use for the developed optical tracking system and associated software: The system was applied to guide the needle 35 times into first sacral root foramina, with a success rate of 97%. It was also used in five bone biopsies, all of which were performed successfully, the samples allowed for a pathologic diagnosis, and the percutaneous procedures could be performed in less than 40 minutes. A new patient tracker device was developed for staged neurosurgical procedures and demonstrated with two patient cases. In the temperature measurement study, spin echo, gradient echo and completely balanced steady-state free precession sequences were optimized for maximal temperature sensitivity and the optimized sequences compared. The steady-state sequence seemed the most promising for the prediction of ablated volume in liver.reviewe

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system
    • 

    corecore