9,203 research outputs found

    An Expressive Language and Efficient Execution System for Software Agents

    Full text link
    Software agents can be used to automate many of the tedious, time-consuming information processing tasks that humans currently have to complete manually. However, to do so, agent plans must be capable of representing the myriad of actions and control flows required to perform those tasks. In addition, since these tasks can require integrating multiple sources of remote information ? typically, a slow, I/O-bound process ? it is desirable to make execution as efficient as possible. To address both of these needs, we present a flexible software agent plan language and a highly parallel execution system that enable the efficient execution of expressive agent plans. The plan language allows complex tasks to be more easily expressed by providing a variety of operators for flexibly processing the data as well as supporting subplans (for modularity) and recursion (for indeterminate looping). The executor is based on a streaming dataflow model of execution to maximize the amount of operator and data parallelism possible at runtime. We have implemented both the language and executor in a system called THESEUS. Our results from testing THESEUS show that streaming dataflow execution can yield significant speedups over both traditional serial (von Neumann) as well as non-streaming dataflow-style execution that existing software and robot agent execution systems currently support. In addition, we show how plans written in the language we present can represent certain types of subtasks that cannot be accomplished using the languages supported by network query engines. Finally, we demonstrate that the increased expressivity of our plan language does not hamper performance; specifically, we show how data can be integrated from multiple remote sources just as efficiently using our architecture as is possible with a state-of-the-art streaming-dataflow network query engine

    Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators

    Full text link
    We show that DNN accelerator micro-architectures and their program mappings represent specific choices of loop order and hardware parallelism for computing the seven nested loops of DNNs, which enables us to create a formal taxonomy of all existing dense DNN accelerators. Surprisingly, the loop transformations needed to create these hardware variants can be precisely and concisely represented by Halide's scheduling language. By modifying the Halide compiler to generate hardware, we create a system that can fairly compare these prior accelerators. As long as proper loop blocking schemes are used, and the hardware can support mapping replicated loops, many different hardware dataflows yield similar energy efficiency with good performance. This is because the loop blocking can ensure that most data references stay on-chip with good locality and the processing units have high resource utilization. How resources are allocated, especially in the memory system, has a large impact on energy and performance. By optimizing hardware resource allocation while keeping throughput constant, we achieve up to 4.2X energy improvement for Convolutional Neural Networks (CNNs), 1.6X and 1.8X improvement for Long Short-Term Memories (LSTMs) and multi-layer perceptrons (MLPs), respectively.Comment: Published as a conference paper at ASPLOS 202

    Dynamic Control Flow in Large-Scale Machine Learning

    Full text link
    Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability.Comment: Appeared in EuroSys 2018. 14 pages, 16 figure
    • …
    corecore