5,698 research outputs found

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Switching frequency regulation in sliding mode control by a hysteresis band controller

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFixing the switching frequency is a key issue in sliding mode control implementations. This paper presents a hysteresis band controller capable of setting a constant value for the steady-state switching frequency of a sliding mode controller in regulation and tracking tasks. The proposed architecture relies on a piecewise linear modeling of the switching function behavior within the hysteresis band, and consists of a discrete-time integral-type controller that modifies the amplitude of the hysteresis band of the comparator in accordance with the error between the desired and the actually measured switching period. For tracking purposes, an additional feedforward action is introduced to compensate the time variation of the switching function derivatives at either sides of the switching hyperplane in the steady state. Stability proofs are provided, and a design criterion for the control parameters to guarantee closed-loop stability is subsequently derived. Numerical simulations and experimental results validate the proposal.Accepted versio

    The Implementation of Active Power Filter using Proportional plus Resonant Controller

    Get PDF
    This paper presents the harmonic elimination using an active power filter (APF) for three-phase system. The design and performance comparison study of the compensating current controllers are explained. The performance of the PI controller and the proportional plus resonant (P+RES) controller are compared in the paper. Moreover, the hardware implementation of the considered system is also presented in this paper. For the experimental results, the P+RES controller can provide a good performance to control the compensating current compared with using the PI controller

    Grid converter for LED based intelligent light sources

    Get PDF

    Local control of multiple module converters with ratings-based load sharing

    Get PDF
    Multiple module dc-dc converters show promise in meeting the increasing demands on ef- ficiency and performance of energy conversion systems. In order to increase reliability, maintainability, and expandability, a modular approach in converter design is often desired. This thesis proposes local control of multiple module converters as an alternative to using a central controller or master controller. A power ratings-based load sharing scheme that allows for uniform and non-uniform sharing is introduced. Focus is given to an input series, output parallel (ISOP) configuration and modules with a push-pull topology. Sensorless current mode (SCM) control is digitally implemented on separate controllers for each of the modules. The benefits of interleaving the switching signals of the distributed modules is presented. Simulation and experimental results demonstrate stable, ratings-based sharing in an ISOP converter with a high conversion ratio for both uniform and non-uniform load sharing cases

    Eingangsadmittanz-Modellierung und passivitätsbasierte Stabilisierung von digital-stromgeregelten, netzgebundenen Umrichtern

    Get PDF
    Due to the ever increasing number of renewable energy systems in the electrical power grid, the application of power electronic-based circuits is gaining more and more importance. It has however been known for a while that interactions of one or multiple converters with resonances in the grid can lead to poorly damped oscillations, and thus, may threaten the stability of parts of the power system. The passivity theory has proven to be particularly powerful in preventing such situations. Accordingly, the stability of the power grid can be guaranteed by design if all components act passive. This means that all active loads and energy feeding converters have an input admittance with a non-negative real part. This can theoretically be achieved using passive or active damping strategies, but most research neglects real-world effects, which arise from the sampling of high-frequency switching harmonics. The aim of this dissertation is therefore to review the complete modeling and analysis of digitally current-controlled grid-connected converters and to extend the controller as well as filter design. On the basis of typical single-input single-output models of the converter’s input admittance, methods for the design of a passive damping or an active feed-forward are proposed and it is discussed which aspects have to be considered when implementing the filters. However, since the used models cannot reproduce all alias effects, in the further part of the thesis a multiple-input multiple-output converter model is developed. It is shown that the mirroring of high-frequency signal components onto low-frequency components can in principle be described by a dynamic uncertainty that affects the behavior of the converters' baseband dynamics. Due to this new insight it becomes clear which criteria passive or active filters should fulfill in order to specifically counteract the often negative mirroring effects of digital control. Finally, it is demonstrated that a robust passivation of the converter input admittance can prevent a destabilization of the power system by harmonics for a large number of grid impedances. The presented theory and the developed controller design are illustrated and verified by various simulations of an exemplary converter system.Aufgrund der immer größer werdenden Anzahl von erneuerbaren Energieanlagen im elektrischen Energieversorgungsnetz gewinnt der Einsatz von leistungselektronischen Schaltungen immer mehr an Bedeutung. Es ist jedoch seit längerem bekannt, dass Wechselwirkungen von einem oder mehreren Umrichtern mit Resonanzen im Netz zu schlecht gedämpften Schwingungen führen und damit die Stabilität von Teilen des Energienetzes gefährden können. Die Passivitätstheorie hat sich als besonders wirkungsvoll erwiesen, um solche Situationen zu verhindern. Demnach kann die Stabilität des Stromnetzes bereits in der Designphase gewährleistet werden, indem alle Komponenten passiv wirken. Das bedeutet, dass alle aktiven Verbraucher und einspeisenden Umrichter eine Eingangsadmittanz mit nicht negativem Realteil besitzen. Dies ist theoretisch mit Hilfe von passiven oder aktiven Dämpfungsstrategien zu erreichen. Die meisten Forschungsarbeiten vernachlässigen jedoch reale Effekte, die bei der Abtastung von hochfrequenten Harmonischen entstehen. Ziel dieser Dissertation ist es daher, den kompletten Modellierungs-, Analyse- und Regler- sowie Filterentwurfsprozess von digital-stromgeregelten, netzgebundenen Umrichtern zu überprüfen und zu erweitern. Auf der Basis typischer Eingrößenmodelle der Umrichter-Eingangsadmittanz werden Verfahren für die Auslegung einer passiven Dämpfung bzw. einer aktiven Vorsteuerung vorgeschlagen und es wird diskutiert, welche Aspekte bei der Implementierung der Filter zu berücksichtigen sind. Da sich mit den Modellen jedoch nicht alle Alias-Effekte abbilden lassen, wird im weiteren Teil der Arbeit ein Mehrgrößen-Umrichtermodell entwickelt. Es zeigt sich, dass die Spiegelung hochfrequenter Signalanteile auf niederfrequente Anteile prinzipiell durch eine dynamische Unsicherheit beschrieben werden kann, die das Grundfrequenzverhalten der Umrichter beeinflusst. Dank dieser neuen Erkenntnisse wird deutlich, welche Kriterien passive oder aktive Filter erfüllen sollten, um den oft negativen Spiegeleffekten der digitalen Regelung gezielt entgegenzuwirken. Es wird demonstriert, dass eine robuste Passivierung der Umrichter-Eingangsadmittanz eine Destabilisierung des Energienetzes durch Harmonische für eine Vielzahl von Netzimpedanzen verhindern kann. Die vorgestellte Theorie und der erarbeitete Reglerentwurf werden anhand diverser Simulationen eines beispielhaften Umrichtersystems verdeutlicht und validiert

    Active stabilization to prevent surge in centrifugal compression systems

    Get PDF
    This report documents an experimental and analytical study of the active stabilization of surge in a centrifugal engine. The aims of the research were to extend the operating range of a compressor as far as possible and to establish the theoretical framework for the active stabilization of surge from both an aerodynamic stability and a control theoretic perspective. In particular, much attention was paid to understanding the physical limitations of active stabilization and how they are influenced by control system design parameters. Previously developed linear models of actively stabilized compressors were extended to include such nonlinear phenomena as bounded actuation, bandwidth limits, and robustness criteria. This model was then used to systematically quantify the influence of sensor-actuator selection on system performance. Five different actuation schemes were considered along with four different sensors. Sensor-actuator choice was shown to have a profound effect on the performance of the stabilized compressor. The optimum choice was not unique, but rather shown to be a strong function of some of the non-dimensional parameters which characterize the compression system dynamics. Specifically, the utility of the concepts were shown to depend on the system compliance to inertia ratio ('B' parameter) and the local slope of the compressor speedline. In general, the most effective arrangements are ones in which the actuator is most closely coupled to the compressor, such as a close-coupled bleed valve inlet jet, rather than elsewhere in the flow train, such as a fuel flow modulator. The analytical model was used to explore the influence of control system bandwidth on control effectiveness. The relevant reference frequency was shown to be the compression system's Helmholtz frequency rather than the surge frequency. The analysis shows that control bandwidths of three to ten times the Helmholtz frequency are required for larger increases in the compressor flow range. This has important implications for implementation in gas turbine engines since the Helmholtz frequencies can be over 100 Hz, making actuator design extremely challenging

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore