14 research outputs found

    High Performance Wireless Sensor-Actuator Networks for Industrial Internet of Things

    Get PDF
    Wireless Sensor-Actuator Networks (WSANs) enable cost-effective communication for Industrial Internet of Things (IIoT). To achieve predictability and reliability demanded by industrial applications, industrial wireless standards (e.g., WirelessHART) incorporate a set of unique features such as a centralized management architecture, Time Slotted Channel Hopping (TSCH), and conservative channel selection. However, those features also incur significant degradation in performance, efficiency, and agility. To overcome these key limitations of existing industrial wireless technologies, this thesis work develops and empirically evaluates a suite of novel network protocols and algorithms. The primary contributions of this thesis are four-fold. (1) We first build an experimental testbed realizing key features of the WirelessHART protocol stack, and perform a series of empirical studies to uncover the limitations and potential improvements of existing network features. (2) We then investigate the impacts of the industrial WSAN protocol’s channel selection mechanism on routing and real-time performance, and present new channel and link selection strategies that improve route diversity and real-time performance. (3) To further enhance performance, we propose and design conservative channel reuse, a novel approach to support concurrent transmissions in a same wireless channel while maintaining a high degree of reliability. (4) Lastly, to address the limitation of the centralized architecture in handling network dynamics, we develop REACT, a Reliable, Efficient, and Adaptive Control Plane for centralized network management. REACT is designed to reduce the latency and energy cost of network reconfiguration by incorporating a reconfiguration planner to reduce a rescheduling cost, and an update engine providing efficient and reliable mechanisms to support schedule reconfiguration. All the network protocols and algorithms developed in this thesis have been empirically evaluated on the wireless testbed. This thesis represents a step toward next-generation IIoT for industrial automation that demands high-performance and agile wireless communication

    Middleware for wireless sensor network virtualization

    Get PDF
    Sensor and network virtualization technology are used in smart home, smart grid, smart city and many other applications of Internet of Things (IoT) that deploy Wireless Sensor Network (WSN) to facilitate multiple sensor data transmission over multiple networks. Existing WSNs are designed for a specific application running on low data rate network. The challenge is how to ensure multiple sensor data for multiple applications be transmitted over multiple heterogeneous networks having different transmission rates while ensuring Quality-of-Service (QoS). The research has developed a middleware that provides sensor and network virtualization with guaranteed QoS. The middleware was designed comprising of two layers: Application Dependent Layer Middleware (ADLM) and Network Dependent Layer Middleware (NDLM). The ADLM combined multiple sensor data to form services based of Service Oriented Application (SOA). It is comprised of service handling manager that combines various sensor data and form services, QoS manager that assigns priority and service scheduling manager that forwards the service frames. The NDLM facilitated seamless transmissions of various service data over multiple heterogeneous networks. It consists of hypervisor which is composed of flowvisor and the powervisor. The flowvisor is madeup of transmit and routing managers responsible for routing and transmitting service packets. The powervisor consists of a resource manager that determines and selects the node with the highest battery power. The middleware was implemented and evaluated on a real experimental testbed. The experimental results showed that the middleware increased throughput by 8.7% and reduced the numbers of packets transmissions from the node by 68.7% compared to proxy middleware using SOA. In addition, end-to-end transmission delay was reduced by 85.2% when compared to SenShare using SOA. The flowvisor at the gateway decreased the waiting time of packets in the queue by 59.8%, when the flowvisor raised the output rate up to 2.5 times the maximum arrival rate of WSN packets. The powervisor increased the node’s life time by 17.6% when compared to VITRO by limiting the transmission power to the existing battery voltage level. In brief, the middleware has provided guaranteed QoS by increasing throughput, reducing end-to-end delay and minimizing energy consumption. The middleware is highly recommended for IoT applications such as smart city and smart grid

    IntegraDos: facilitating the adoption of the Internet of Things through the integration of technologies

    Get PDF
    También, han sido analizados los componentes para una integración del IoT y cloud computing, concluyendo en la arquitectura Lambda-CoAP. Y por último, los desafíos para una integración del IoT y Blockchain han sido analizados junto con una evaluación de las posibilidades de los dispositivos del IoT para incorporar nodos de Blockchain. Las contribuciones de esta tesis doctoral contribuyen a acercar la adopción del IoT en la sociedad, y por tanto, a la expansión de esta prominente tecnología. Fecha de lectura de Tesis: 17 de diciembre 2018.El Internet de las Cosas (IoT) fue un nuevo concepto introducido por K. Asthon en 1999 para referirse a un conjunto identificable de objetos conectados a través de RFID. Actualmente, el IoT se caracteriza por ser una tecnología ubicua que está presente en un gran número de áreas, como puede ser la monitorización de infraestructuras críticas, sistemas de trazabilidad o sistemas asistidos para el cuidado de la salud. El IoT está cada vez más presente en nuestro día a día, cubriendo un gran abanico de posibilidades con el fin de optimizar los procesos y problemas a los que se enfrenta la sociedad. Es por ello por lo que el IoT es una tecnología prometedora que está continuamente evolucionando gracias a la continua investigación y el gran número de dispositivos, sistemas y componentes emergidos cada día. Sin embargo, los dispositivos involucrados en el IoT se corresponden normalmente con dispositivos embebidos con limitaciones de almacenamiento y procesamiento, así como restricciones de memoria y potencia. Además, el número de objetos o dispositivos conectados a Internet contiene grandes previsiones de crecimiento para los próximos años, con unas expectativas de 500 miles de millones de objetos conectados para 2030. Por lo tanto, para dar cabida a despliegues globales del IoT, además de suplir las limitaciones que existen, es necesario involucrar nuevos sistemas y paradigmas que faciliten la adopción de este campo. El principal objetivo de esta tesis doctoral, conocida como IntegraDos, es facilitar la adopción del IoT a través de la integración con una serie de tecnologías. Por un lado, ha sido abordado cómo puede ser facilitada la gestión de sensores y actuadores en dispositivos físicos sin tener que acceder y programar las placas de desarrollo. Por otro lado, un sistema para programar aplicaciones del IoT portables, adaptables, personalizadas y desacopladas de los dispositivos ha sido definido

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    Correct-by-Construction Development of Dynamic Topology Control Algorithms

    Get PDF
    Wireless devices are influencing our everyday lives today and will even more so in the future. A wireless sensor network (WSN) consists of dozens to hundreds of small, cheap, battery-powered, resource-constrained sensor devices (motes) that cooperate to serve a common purpose. These networks are applied in safety- and security-critical areas (e.g., e-health, intrusion detection). The topology of such a system is an attributed graph consisting of nodes representing the devices and edges representing the communication links between devices. Topology control (TC) improves the energy consumption behavior of a WSN by blocking costly links. This allows a mote to reduce its transmission power. A TC algorithm must fulfill important consistency properties (e.g., that the resulting topology is connected). The traditional development process for TC algorithms only considers consistency properties during the initial specification phase. The actual implementation is carried out manually, which is error prone and time consuming. Thus, it is difficult to verify that the implementation fulfills the required consistency properties. The problem becomes even more severe if the development process is iterative. Additionally, many TC algorithms are batch algorithms, which process the entire topology, irrespective of the extent of the topology modifications since the last execution. Therefore, dynamic TC is desirable, which reacts to change events of the topology. In this thesis, we propose a model-driven correct-by-construction methodology for developing dynamic TC algorithms. We model local consistency properties using graph constraints and global consistency properties using second-order logic. Graph transformation rules capture the different types of topology modifications. To specify the control flow of a TC algorithm, we employ the programmed graph transformation language story-driven modeling. We presume that local consistency properties jointly imply the global consistency properties. We ensure the fulfillment of the local consistency properties by synthesizing weakest preconditions for each rule. The synthesized preconditions prohibit the application of a rule if and only if the application would lead to a violation of a consistency property. Still, this restriction is infeasible for topology modifications that need to be executed in any case. Therefore, as a major contribution of this thesis, we propose the anticipation loop synthesis algorithm, which transforms the synthesized preconditions into routines that anticipate all violations of these preconditions. This algorithm also enables the correct-by-construction runtime reconfiguration of adaptive WSNs. We provide tooling for both common evaluation steps. Cobolt allows to evaluate the specified TC algorithms rapidly using the network simulator Simonstrator. cMoflon generates embedded C code for hardware testbeds that build on the sensor operating system Contiki

    XIII Jornadas de ingeniería telemática (JITEL 2017)

    Full text link
    Las Jornadas de Ingeniería Telemática (JITEL), organizadas por la Asociación de Telemática (ATEL), constituyen un foro propicio de reunión, debate y divulgación para los grupos que imparten docencia e investigan en temas relacionados con las redes y los servicios telemáticos. Con la organización de este evento se pretende fomentar, por un lado el intercambio de experiencias y resultados, además de la comunicación y cooperación entre los grupos de investigación que trabajan en temas relacionados con la telemática. En paralelo a las tradicionales sesiones que caracterizan los congresos científicos, se desea potenciar actividades más abiertas, que estimulen el intercambio de ideas entre los investigadores experimentados y los noveles, así como la creación de vínculos y puntos de encuentro entre los diferentes grupos o equipos de investigación. Para ello, además de invitar a personas relevantes en los campos correspondientes, se van a incluir sesiones de presentación y debate de las líneas y proyectos activos de los mencionados equiposLloret Mauri, J.; Casares Giner, V. (2018). XIII Jornadas de ingeniería telemática (JITEL 2017). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/97612EDITORIA

    Anomaly detection in smart city wireless sensor networks

    Get PDF
    Aquesta tesi proposa una plataforma de detecció d’intrusions per a revelar atacs a les xarxes de sensors sense fils (WSN, per les sigles en anglès) de les ciutats intel·ligents (smart cities). La plataforma està dissenyada tenint en compte les necessitats dels administradors de la ciutat intel·ligent, els quals necessiten accés a una arquitectura centralitzada que pugui gestionar alarmes de seguretat en un sistema altament heterogeni i distribuït. En aquesta tesi s’identifiquen els diversos passos necessaris des de la recollida de dades fins a l’execució de les tècniques de detecció d’intrusions i s’avalua que el procés sigui escalable i capaç de gestionar dades típiques de ciutats intel·ligents. A més, es comparen diversos algorismes de detecció d’anomalies i s’observa que els mètodes de vectors de suport d’una mateixa classe (one-class support vector machines) resulten la tècnica multivariant més adequada per a descobrir atacs tenint en compte les necessitats d’aquest context. Finalment, es proposa un esquema per a ajudar els administradors a identificar els tipus d’atacs rebuts a partir de les alarmes disparades.Esta tesis propone una plataforma de detección de intrusiones para revelar ataques en las redes de sensores inalámbricas (WSN, por las siglas en inglés) de las ciudades inteligentes (smart cities). La plataforma está diseñada teniendo en cuenta la necesidad de los administradores de la ciudad inteligente, los cuales necesitan acceso a una arquitectura centralizada que pueda gestionar alarmas de seguridad en un sistema altamente heterogéneo y distribuido. En esta tesis se identifican los varios pasos necesarios desde la recolección de datos hasta la ejecución de las técnicas de detección de intrusiones y se evalúa que el proceso sea escalable y capaz de gestionar datos típicos de ciudades inteligentes. Además, se comparan varios algoritmos de detección de anomalías y se observa que las máquinas de vectores de soporte de una misma clase (one-class support vector machines) resultan la técnica multivariante más adecuada para descubrir ataques teniendo en cuenta las necesidades de este contexto. Finalmente, se propone un esquema para ayudar a los administradores a identificar los tipos de ataques recibidos a partir de las alarmas disparadas.This thesis proposes an intrusion detection platform which reveals attacks in smart city wireless sensor networks (WSN). The platform is designed taking into account the needs of smart city administrators, who need access to a centralized architecture that can manage security alarms in a highly heterogeneous and distributed system. In this thesis, we identify the various necessary steps from gathering WSN data to running the detection techniques and we evaluate whether the procedure is scalable and capable of handling typical smart city data. Moreover, we compare several anomaly detection algorithms and we observe that one-class support vector machines constitute the most suitable multivariate technique to reveal attacks, taking into account the requirements in this context. Finally, we propose a classification schema to assist administrators in identifying the types of attacks compromising their networks

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Flexible network management in software defined wireless sensor networks for monitoring application systems

    Get PDF
    Wireless Sensor Networks (WSNs) are the commonly applied information technologies of modern networking and computing platforms for application-specific systems. Today’s network computing applications are faced with high demand of reliable and powerful network functionalities. Hence, efficient network performance is central to the entire ecosystem, more especially where human life is a concern. However, effective management of WSNs remains a challenge due to problems supplemental to them. As a result, WSNs application systems such as in monitored environments, surveillance, aeronautics, medicine, processing and control, tend to suffer in terms of capacity to support compute intensive services due to limitations experienced on them. A recent technology shift proposes Software Defined Networking (SDN) for improving computing networks as well as enhancing network resource management, especially for life guarding systems. As an optimization strategy, a software-oriented approach for WSNs, known as Software Defined Wireless Sensor Network (SDWSN) is implemented to evolve, enhance and provide computing capacity to these resource constrained technologies. Software developmental strategies are applied with the focus to ensure efficient network management, introduce network flexibility and advance network innovation towards the maximum operation potential for WSNs application systems. The need to develop WSNs application systems which are powerful and scalable has grown tremendously due to their simplicity in implementation and application. Their nature of design serves as a potential direction for the much anticipated and resource abundant IoT networks. Information systems such as data analytics, shared computing resources, control systems, big data support, visualizations, system audits, artificial intelligence (AI), etc. are a necessity to everyday life of consumers. Such systems can greatly benefit from the SDN programmability strategy, in terms of improving how data is mined, analysed and committed to other parts of the system for greater functionality. This work proposes and implements SDN strategies for enhancing WSNs application systems especially for life critical systems. It also highlights implementation considerations for designing powerful WSNs application systems by focusing on system critical aspects that should not be disregarded when planning to improve core network functionalities. Due to their inherent challenges, WSN application systems lack robustness, reliability and scalability to support high computing demands. Anticipated systems must have greater capabilities to ubiquitously support many applications with flexible resources that can be easily accessed. To achieve this, such systems must incorporate powerful strategies for efficient data aggregation, query computations, communication and information presentation. The notion of applying machine learning methods to WSN systems is fairly new, though carries the potential to enhance WSN application technologies. This technological direction seeks to bring intelligent functionalities to WSN systems given the characteristics of wireless sensor nodes in terms of cooperative data transmission. With these technological aspects, a technical study is therefore conducted with a focus on WSN application systems as to how SDN strategies coupled with machine learning methods, can contribute with viable solutions on monitoring application systems to support and provide various applications and services with greater performance. To realize this, this work further proposes and implements machine learning (ML) methods coupled with SDN strategies to; enhance sensor data aggregation, introduce network flexibility, improve resource management, query processing and sensor information presentation. Hence, this work directly contributes to SDWSN strategies for monitoring application systems.Thesis (PhD)--University of Pretoria, 2018.National Research Foundation (NRF)Telkom Centre of ExcellenceElectrical, Electronic and Computer EngineeringPhDUnrestricte
    corecore