113 research outputs found

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

    Get PDF
    This study proposes an adaptive neural network controller for a 3-DOF robotic manipulator that is subject to backlashlike hysteresis and friction. Two neural networks are used to approximate the dynamics and the hysteresis non-linearity. A neural network, which utilises a radial basis function approximates the robot's dynamics. The other neural network, which employs a hyperbolic tangent activation function, is used to approximate the unknown backlash-like hysteresis. The authors also consider two cases: full state and output feedback control. For output feedback, where system states are unknown, a high gain observer is employed to estimate the states. The proposed controllers ensure the boundedness of the control signals. Simulations are also performed to show the effectiveness of the controllers

    Adaptive neural complementary sliding-mode control via functional-linked wavelet neural network

    Get PDF
    [[abstract]]Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known. This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is composed of a neural controller and a robust compensator, for a chaotic system. The neural controller uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it shows by the simulation results that favorable control performance can be achieved for a chaotic system by the proposed ANCSC scheme.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: Theory and experimental results

    Get PDF
    In this paper, an adaptive trajectory trackingcontrol algorithm for underactuated unmanned surfacevessels (USVs) with guaranteed transient performance isproposed. To meet the realistic dynamical model of USVs,we consider that the mass and damping matrices are notdiagonal and the input saturation problem. Neural Networks(NNs) are employed to approximate the unknown externaldisturbances and uncertain hydrodynamics of USVs. Moreover,both full state feedback control and output feedbackcontrol are presented, and the unmeasurable velocities ofthe output feedback controller are estimated via a highgainobserver. Unlike the conventional control methods,we employ the error transformation function to guaranteethe transient tracking performance. Both simulation andexperimental results are carried out to validate the superiorperformance via comparing with traditional potential integral(PI) control approaches
    corecore