5,414 research outputs found

    Reconfigurable interconnects in DSM systems: a focus on context switch behavior

    Get PDF
    Recent advances in the development of reconfigurable optical interconnect technologies allow for the fabrication of low cost and run-time adaptable interconnects in large distributed shared-memory (DSM) multiprocessor machines. This can allow the use of adaptable interconnection networks that alleviate the huge bottleneck present due to the gap between the processing speed and the memory access time over the network. In this paper we have studied the scheduling of tasks by the kernel of the operating system (OS) and its influence on communication between the processing nodes of the system, focusing on the traffic generated just after a context switch. We aim to use these results as a basis to propose a potential reconfiguration of the network that could provide a significant speedup

    Throughput analysis for a high-performance FPGA-accelerated real-time search application

    Get PDF
    We propose an FPGA design for the relevancy computation part of a high-throughput real-time search application. The application matches terms in a stream of documents against a static profile, held in off-chip memory. We present a mathematical analysis of the throughput of the application and apply it to the problem of scaling the Bloom filter used to discard nonmatches

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Using a Grid-Enabled Wireless Sensor Network for Flood Management

    Get PDF
    Flooding is becoming an increasing problem. As a result there is a need to deploy more sophisticated sensor networks to detect and react to flooding. This paper outlines a demonstration that illustrates our proposed solution to this problem involving embedded wireless hardware, component based middleware and overlay networks

    An internet of laboratory things

    Get PDF
    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade equipment, as well as large-class sets of off-the-shelf work stations and bespoke teaching apparatus. Distance to the student is no object and the facilities are open all hours. This approach is essential for STEM qualifications requiring development of practical skills, with higher efficiency and greater accessibility than achievable in a solely residential programme

    Reconfigurability Function Deployment in Software Development

    Get PDF
    In the forthcoming highly dynamic and complex business environment high-speed and cost-effective development of software applications for targeting a precise, unique and momentary set of requirements (no more-no less) associated to a customized business case will bring sig-nificant benefits both for producers and users. This requires a life cycle change-oriented ap-proach in software development. In this respect, designing software with intrinsic evolutionary resources for reconfiguration represents the sound approach. A methodology for concurrent deployment of reconfigurability characteristics in software applications is introduced in this paper. Its potential is exemplified in a case study dealing with web-based software tools to support systematic product innovation projects.Reconfigurability, Software Development, Innovation, TRIZ, RAD

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    PickCells: A Physically Reconfigurable Cell-composed Touchscreen

    Get PDF
    Touchscreens are the predominant medium for interactions with digital services; however, their current fixed form factor narrows the scope for rich physical interactions by limiting interaction possibilities to a single, planar surface. In this paper we introduce the concept of PickCells, a fully reconfigurable device concept composed of cells, that breaks the mould of rigid screens and explores a modular system that affords rich sets of tangible interactions and novel acrossdevice relationships. Through a series of co-design activities – involving HCI experts and potential end-users of such systems – we synthesised a design space aimed at inspiring future research, giving researchers and designers a framework in which to explore modular screen interactions. The design space we propose unifies existing works on modular touch surfaces under a general framework and broadens horizons by opening up unexplored spaces providing new interaction possibilities. In this paper, we present the PickCells concept, a design space of modular touch surfaces, and propose a toolkit for quick scenario prototyping
    • 

    corecore