54 research outputs found

    Bit-parallel word-serial polynomial basis finite field multiplier in GF(2(233)).

    Get PDF
    Smart card gains extensive uses as a cryptographic hardware in security applications in daily life. The characteristics of smart card require that the cryptographic hardware inside the smart card have the trade-off between area and speed. There are two main public key cryptosystems, these are RSA cryptosystem and elliptic curve (EC) cryptosystem. EC has many advantages compared with RSA such as shorter key length and more suitable for VLSI implementation. Such advantages make EC an ideal candidate for smart card. Finite field multiplier is the key component in EC hardware. In this thesis, bit-parallel word-serial (BPWS) polynomial basis (PB) finite field multipliers are designed. Such architectures trade-off area with speed and are very useful for smart card. An ASIC chip which can perform finite field multiplication and finite field squaring using the BPWS PB finite field multiplier is designed in this thesis. The proposed circuit has been implemented using TSMC 0.18 CMOS technology. A novel 8 x 233 bit-parallel partial product generator is also designed. This new partial product generator has low circuit complexity. The design algorithm can be easily extended to w x m bit-parallel partial product generator for GF(2m).Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .T36. Source: Masters Abstracts International, Volume: 43-01, page: 0286. Advisers: H. Wu; M. Ahmadi. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Tuning the Computational Effort: An Adaptive Accuracy-aware Approach Across System Layers

    Get PDF
    This thesis introduces a novel methodology to realize accuracy-aware systems, which will help designers integrate accuracy awareness into their systems. It proposes an adaptive accuracy-aware approach across system layers that addresses current challenges in that domain, combining and tuning accuracy-aware methods on different system layers. To widen the scope of accuracy-aware computing including approximate computing for other domains, this thesis presents innovative accuracy-aware methods and techniques for different system layers. The required tuning of the accuracy-aware methods is integrated into a configuration layer that tunes the available knobs of the accuracy-aware methods integrated into a system

    Control Software for Reconfigurable Coprocessors

    Get PDF
    On-line data processing at the ATLAS general purpose particle detector, which is currently under construction at Geneva, generates demands on computing power that are difficult to satisfy with commodity CPU-based computers. One of the most demanding applications is the recognition of particle tracks that originate from B-quark decays. However, this and many others applications can benefit from parallel execution on field programmable gate arrays (FPGA). After the demonstration of accelerated track recognition with big FPGA-based custom computers, the development of FPGA based coprocessors started in the late 1990's. Applications of FPGA coprocessors are usually partitioned between the host and the tightly coupled coprocessor. The objective of the research that I present in this thesis was the development of software that mediates to applications the access to FPGA coprocessors. I used a software process based on iterative prototyping to cope with the expected changing requirements. Also, I used a strict bottom-up design to create classes that model devices on the coprocessors. Using these low-level classes, I developed tools which were used for bootstrapping, debugging, and firmware update of the coprocessors during their development and maintenance. Measurements show that the software overhead introduced by object-oriented programming and software layering is small. The software-support for six different coprocessors was partitioned into corresponding independent packages, which reuse a set of packages that provide common and basic functions. The steady evolution and use of the software during more than four years shows that the software is maintainable, adaptable, and usable

    Gbit/second lossless data compression hardware

    Get PDF
    This thesis investigates how to improve the performance of lossless data compression hardware as a tool to reduce the cost per bit stored in a computer system or transmitted over a communication network. Lossless data compression allows the exact reconstruction of the original data after decompression. Its deployment in some high-bandwidth applications has been hampered due to performance limitations in the compressing hardware that needs to match the performance of the original system to avoid becoming a bottleneck. Advancing the area of lossless data compression hardware, hence, offers a valid motivation with the potential of doubling the performance of the system that incorporates it with minimum investment. This work starts by presenting an analysis of current compression methods with the objective of identifying the factors that limit performance and also the factors that increase it. [Continues.

    Algorithms and architectures for the multirate additive synthesis of musical tones

    Get PDF
    In classical Additive Synthesis (AS), the output signal is the sum of a large number of independently controllable sinusoidal partials. The advantages of AS for music synthesis are well known as is the high computational cost. This thesis is concerned with the computational optimisation of AS by multirate DSP techniques. In note-based music synthesis, the expected bounds of the frequency trajectory of each partial in a finite lifecycle tone determine critical time-invariant partial-specific sample rates which are lower than the conventional rate (in excess of 40kHz) resulting in computational savings. Scheduling and interpolation (to suppress quantisation noise) for many sample rates is required, leading to the concept of Multirate Additive Synthesis (MAS) where these overheads are minimised by synthesis filterbanks which quantise the set of available sample rates. Alternative AS optimisations are also appraised. It is shown that a hierarchical interpretation of the QMF filterbank preserves AS generality and permits efficient context-specific adaptation of computation to required note dynamics. Practical QMF implementation and the modifications necessary for MAS are discussed. QMF transition widths can be logically excluded from the MAS paradigm, at a cost. Therefore a novel filterbank is evaluated where transition widths are physically excluded. Benchmarking of a hypothetical orchestral synthesis application provides a tentative quantitative analysis of the performance improvement of MAS over AS. The mapping of MAS into VLSI is opened by a review of sine computation techniques. Then the functional specification and high-level design of a conceptual MAS Coprocessor (MASC) is developed which functions with high autonomy in a loosely-coupled master- slave configuration with a Host CPU which executes filterbanks in software. Standard hardware optimisation techniques are used, such as pipelining, based upon the principle of an application-specific memory hierarchy which maximises MASC throughput

    Doctor of Philosophy

    Get PDF
    dissertationIliad is a diagnostic expert system for internal medicine. One important feature that Iliad offers is the ability to analyze a particular patient case and to determine the most cost-effective findings to pursue next at any stage of a work-up. The best information"" algorithm combines an information content calculation together with a cost factor. The calculations then provide a rank-ordering of the alternative patient findings according to cost-effectiveness. This dissertation presents a three-part study to evaluate the performance of different best information algorithms. In the first two parts of the study the suggestions about the next best data elements to pursue from different algorithms were collected for different vignettes. The performance of different algorithms was compared based on the judgments provided by expert clinicians. The results indicated that the current Iliad information content model could be improved by using a version of Shannon information content model. The third part of the study evaluated different best information algorithms by a simulation approach. The results indicated that two types of diagnostic behaviors could be simulated. The first type of behavior was characterized by pursuing more history and physical examination findings, less laboratory tests, less expensive work-ups, and more steps to solve a patient case. The second type of behavior was characterized by pursuing less history and physical examination findings, more laboratory tests, more expensive work-ups, and less steps to solve a patient case. The Shannon information content model accomplished work-ups that were significantly less costly than work-ups performed by the current LR (likelihood ratio) information content model. However, the Shannon model required additional computational resources and more history and physical examination steps than the LR model. Decisions regarding the implementation of alternative models require a balance of the relative merits of cost, steps, expert preference, and other important factors."

    NASA Tech Briefs, July 1993

    Get PDF
    Topics include: Data Acquisition and Analysis: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    A microcoded elliptic curve cryptographic processor.

    Get PDF
    Leung Ka Ho.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves [85]-90).Abstracts in English and Chinese.Abstract --- p.iAcknowledgments --- p.iiiList of Figures --- p.ixList of Tables --- p.xiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Aims --- p.3Chapter 1.3 --- Contributions --- p.3Chapter 1.4 --- Thesis Outline --- p.4Chapter 2 --- Cryptography --- p.6Chapter 2.1 --- Introduction --- p.6Chapter 2.2 --- Foundations --- p.6Chapter 2.3 --- Secret Key Cryptosystems --- p.8Chapter 2.4 --- Public Key Cryptosystems --- p.9Chapter 2.4.1 --- One-way Function --- p.10Chapter 2.4.2 --- Certification Authority --- p.10Chapter 2.4.3 --- Discrete Logarithm Problem --- p.11Chapter 2.4.4 --- RSA vs. ECC --- p.12Chapter 2.4.5 --- Key Exchange Protocol --- p.13Chapter 2.4.6 --- Digital Signature --- p.14Chapter 2.5 --- Secret Key vs. Public Key Cryptography --- p.16Chapter 2.6 --- Summary --- p.18Chapter 3 --- Mathematical Background --- p.19Chapter 3.1 --- Introduction --- p.19Chapter 3.2 --- Groups and Fields --- p.19Chapter 3.3 --- Finite Fields --- p.21Chapter 3.4 --- Modular Arithmetic --- p.21Chapter 3.5 --- Polynomial Basis --- p.21Chapter 3.6 --- Optimal Normal Basis --- p.22Chapter 3.6.1 --- Addition --- p.23Chapter 3.6.2 --- Squaring --- p.24Chapter 3.6.3 --- Multiplication --- p.24Chapter 3.6.4 --- Inversion --- p.30Chapter 3.7 --- Summary --- p.33Chapter 4 --- Literature Review --- p.34Chapter 4.1 --- Introduction --- p.34Chapter 4.2 --- Hardware Elliptic Curve Implementation --- p.34Chapter 4.2.1 --- Field Processors --- p.34Chapter 4.2.2 --- Curve Processors --- p.36Chapter 4.3 --- Software Elliptic Curve Implementation --- p.36Chapter 4.4 --- Summary --- p.38Chapter 5 --- Introduction to Elliptic Curves --- p.39Chapter 5.1 --- Introduction --- p.39Chapter 5.2 --- Historical Background --- p.39Chapter 5.3 --- Elliptic Curves over R2 --- p.40Chapter 5.3.1 --- Curve Addition and Doubling --- p.41Chapter 5.4 --- Elliptic Curves over Finite Fields --- p.44Chapter 5.4.1 --- Elliptic Curves over Fp with p>〉3 --- p.44Chapter 5.4.2 --- Elliptic Curves over F2n --- p.45Chapter 5.4.3 --- Operations of Elliptic Curves over F2n --- p.46Chapter 5.4.4 --- Curve Multiplication --- p.49Chapter 5.5 --- Elliptic Curve Discrete Logarithm Problem --- p.51Chapter 5.6 --- Public Key Cryptography --- p.52Chapter 5.7 --- Elliptic Curve Diffie-Hellman Key Exchange --- p.54Chapter 5.8 --- Summary --- p.55Chapter 6 --- Design Methodology --- p.56Chapter 6.1 --- Introduction --- p.56Chapter 6.2 --- CAD Tools --- p.56Chapter 6.3 --- Hardware Platform --- p.59Chapter 6.3.1 --- FPGA --- p.59Chapter 6.3.2 --- Reconfigurable Hardware Computing --- p.62Chapter 6.4 --- Elliptic Curve Processor Architecture --- p.63Chapter 6.4.1 --- Arithmetic Logic Unit (ALU) --- p.64Chapter 6.4.2 --- Register File --- p.68Chapter 6.4.3 --- Microcode --- p.69Chapter 6.5 --- Parameterized Module Generator --- p.72Chapter 6.6 --- Microcode Toolkit --- p.73Chapter 6.7 --- Initialization by Bitstream Reconfiguration --- p.74Chapter 6.8 --- Summary --- p.75Chapter 7 --- Results --- p.76Chapter 7.1 --- Introduction --- p.76Chapter 7.2 --- Elliptic Curve Processor with Serial Multiplier (p = 1) --- p.76Chapter 7.3 --- Projective verses Affine Coordinates --- p.78Chapter 7.4 --- Elliptic Curve Processor with Parallel Multiplier (p > 1) --- p.79Chapter 7.5 --- Summary --- p.80Chapter 8 --- Conclusion --- p.82Chapter 8.1 --- Recommendations for Future Research --- p.83Bibliography --- p.85Chapter A --- Elliptic Curves in Characteristics 2 and3 --- p.91Chapter A.1 --- Introduction --- p.91Chapter A.2 --- Derivations --- p.91Chapter A.3 --- "Elliptic Curves over Finite Fields of Characteristic ≠ 2,3" --- p.92Chapter A.4 --- Elliptic Curves over Finite Fields of Characteristic = 2 --- p.94Chapter B --- Examples of Curve Multiplication --- p.95Chapter B.1 --- Introduction --- p.95Chapter B.2 --- Numerical Results --- p.9
    • …
    corecore