66 research outputs found

    Provably secure memory isolation for Linux on ARM

    Full text link

    Model checking boot code from AWS data centers

    Get PDF
    © 2020, The Author(s). This paper describes our experience with symbolic model checking in an industrial setting. We have proved that the initial boot code running in data centers at Amazon Web Services is memory safe, an essential step in establishing the security of any data center. Standard static analysis tools cannot be easily used on boot code without modification owing to issues not commonly found in higher-level code, including memory-mapped device interfaces, byte-level memory access, and linker scripts. This paper describes automated solutions to these issues and their implementation in the C Bounded Model Checker (CBMC). CBMC is now the first source-level static analysis tool to extract the memory layout described in a linker script for use in its analysis

    Featherweight VeriFast

    Full text link
    VeriFast is a leading research prototype tool for the sound modular verification of safety and correctness properties of single-threaded and multithreaded C and Java programs. It has been used as a vehicle for exploration and validation of novel program verification techniques and for industrial case studies; it has served well at a number of program verification competitions; and it has been used for teaching by multiple teachers independent of the authors. However, until now, while VeriFast's operation has been described informally in a number of publications, and specific verification techniques have been formalized, a clear and precise exposition of how VeriFast works has not yet appeared. In this article we present for the first time a formal definition and soundness proof of a core subset of the VeriFast program verification approach. The exposition aims to be both accessible and rigorous: the text is based on lecture notes for a graduate course on program verification, and it is backed by an executable machine-readable definition and machine-checked soundness proof in Coq

    Reverse Engineering of Binary Device Drivers with RevNIC

    Get PDF
    This paper presents a technique that helps automate the reverse engineering of device drivers. It takes a closed-source binary driver, automatically reverse engineers the driver’s logic, and synthesizes new device driver code that implements the exact same hardware protocol as the original driver. This code can be targeted at the same or a different OS. No vendor documentation or source code is required. Drivers are often proprietary and available for only one or two operating systems, thus restricting the range of device support on all other OSes. Restricted device support leads to low market viability of new OSes and hampers OS researchers in their efforts to make their ideas available to the “real world.” Reverse engineering can help automate the porting of drivers, as well as produce replacement drivers with fewer bugs and fewer security vulnerabilities. Our technique is embodied in RevNIC, a tool for reverse engineering network drivers. We use RevNIC to reverse engineer four proprietary Windows drivers and port them to four different OSes, both for PCs and embedded systems. The synthesized network drivers deliver performance nearly identical to that of the original drivers

    Survey of Approaches and Techniques for Security Verification of Computer Systems

    Get PDF
    This paper surveys the landscape of security verification approaches and techniques for computer systems at various levels: from a software-application level all the way to the physical hardware level. Different existing projects are compared, based on the tools used and security aspects being examined. Since many systems require both hardware and software components to work together to provide the system\u27s promised security protections, it is not sufficient to verify just the software levels or just the hardware levels in a mutually exclusive fashion. This survey especially highlights system levels that are verified by the different existing projects and presents to the readers the state of the art in hardware and software system security verification. Few approaches come close to providing full-system verification, and there is still much room for improvement

    Control Behavior Integrity for Distributed Cyber-Physical Systems

    Get PDF
    Cyber-physical control systems, such as industrial control systems (ICS), are increasingly targeted by cyberattacks. Such attacks can potentially cause tremendous damage, affect critical infrastructure or even jeopardize human life when the system does not behave as intended. Cyberattacks, however, are not new and decades of security research have developed plenty of solutions to thwart them. Unfortunately, many of these solutions cannot be easily applied to safety-critical cyber-physical systems. Further, the attack surface of ICS is quite different from what can be commonly assumed in classical IT systems. We present Scadman, a system with the goal to preserve the Control Behavior Integrity (CBI) of distributed cyber-physical systems. By observing the system-wide behavior, the correctness of individual controllers in the system can be verified. This allows Scadman to detect a wide range of attacks against controllers, like programmable logic controller (PLCs), including malware attacks, code-reuse and data-only attacks. We implemented and evaluated Scadman based on a real-world water treatment testbed for research and training on ICS security. Our results show that we can detect a wide range of attacks--including attacks that have previously been undetectable by typical state estimation techniques--while causing no false-positive warning for nominal threshold values.Comment: 15 pages, 8 figure

    Defining interfaces between hardware and software: Quality and performance

    Get PDF
    One of the most important interfaces in a computer system is the interface between hardware and software. This interface is the contract between the hardware designer and the programmer that defines the functional behaviour of the hardware. This thesis examines two critical aspects of defining the hardware-software interface: quality and performance. The first aspect is creating a high quality specification of the interface as conventionally defined in an instruction set architecture. The majority of this thesis is concerned with creating a specification that covers the full scope of the interface; that is applicable to all current implementations of the architecture; and that can be trusted to accurately describe the behaviour of implementations of the architecture. We describe the development of a formal specification of the two major types of Arm processors: A-class (for mobile devices such as phones and tablets) and M-class (for micro-controllers). These specifications are unparalleled in their scope, applicability and trustworthiness. This thesis identifies and illustrates what we consider the key ingredient in achieving this goal: creating a specification that is used by many different user groups. Supporting many different groups leads to improved quality as each group finds different problems in the specification; and, by providing value to each different group, it helps justify the considerable effort required to create a high quality specification of a major processor architecture. The work described in this thesis led to a step change in Arm's ability to use formal verification techniques to detect errors in their processors; enabled extensive testing of the specification against Arm's official architecture conformance suite; improved the quality of Arm's architecture conformance suite based on measuring the architectural coverage of the tests; supported earlier, faster development of architecture extensions by enabling animation of changes as they are being made; and enabled early detection of problems created from architecture extensions by performing formal validation of the specification against semi-structured natural language specifications. As far as we are aware, no other mainstream processor architecture has this capability. The formal specifications are included in Arm's publicly released architecture reference manuals and the A-class specification is also released in machine-readable form. The second aspect is creating a high performance interface by defining the hardware-software interface of a software-defined radio subsystem using a programming language. That is, an interface that allows software to exploit the potential performance of the underlying hardware. While the hardware-software interface is normally defined in terms of machine code, peripheral control registers and memory maps, we define it using a programming language instead. This higher level interface provides the opportunity for compilers to hide some of the low-level differences between different systems from the programmer: a potentially very efficient way of providing a stable, portable interface without having to add hardware to provide portability between different hardware platforms. We describe the design and implementation of a set of extensions to the C programming language to support programming high performance, energy efficient, software defined radio systems. The language extensions enable the programmer to exploit the pipeline parallelism typically present in digital signal processing applications and to make efficient use of the asymmetric multiprocessor systems designed to support such applications. The extensions consist primarily of annotations that can be checked for consistency and that support annotation inference in order to reduce the number of annotations required. Reducing the number of annotations does not just save programmer effort, it also improves portability by reducing the number of annotations that need to be changed when porting an application from one platform to another. This work formed part of a project that developed a high-performance, energy-efficient, software defined radio capable of implementing the physical layers of the 4G cellphone standard (LTE), 802.11a WiFi and Digital Video Broadcast (DVB) with a power and silicon area budget that was competitive with a conventional custom ASIC solution. The Arm architecture is the largest computer architecture by volume in the world. It behooves us to ensure that the interface it describes is appropriately defined
    • …
    corecore