8,655 research outputs found

    Soft-Error Tolerant Quasi Delay-insensitive Circuits

    Get PDF
    A hard error is an error that damages a circuit irrevocably; a soft error flips the logic states without causing any physical damage to the circuit, resulting in transient corruption of data. They result in transient, inconsistent corruption of data. The soft-error tolerance of logic circuits is recently getting more attention, since the soft- error rate of advanced CMOS devices is higher than before. As a response to the concern on soft errors, we propose a new method for making asynchronous circuits tolerant to soft errors. Since it relies on a property unique to asynchronous circuits, the method is different from what is done in synchronous circuits with triple modular redundancy. Asynchronous circuits have been attractive to the designers of reliable systems, because of their clock-less design, which makes them more robust to variations on computation time of modules. The quasi delay-insensitive (QDI) design style is one of the most robust asynchronous design styles for general computation; it makes one minimal assumption on delays in gates and wires. QDI circuits are easy to verify, simple, and modular, because the correct operation of a QDI circuit is independent of delays in gates and wires. Here, we shall overview how to design a QDI circuit, and what will happen if a soft error occurs on a QDI circuit. Then the crucial components of the method are shown: (1) a special kind of duplication for random logic (when each bit has to be corrected individually), (2) special protection circuitry for arbiter and synchronizer (as needed for example for external interrupts), (3) reconfigurable circuits using a special configuration unit, and (4) error correcting for memory arrays and other structures in which the data bits can be self- corrected. The solution of protecting random logic is compared with alternatives, which use other types of error correcting codes (e.g., parity code) in a QDI circuit. It turns out that the duplication generates efficient circuits more commonly than other possible constructions. Finally, the design of a soft-error tolerant asynchronous microprocessor is detailed and testing results of the soft-error tolerance of the microprocessor are shown.</p

    Statistical Reliability Estimation of Microprocessor-Based Systems

    Get PDF
    What is the probability that the execution state of a given microprocessor running a given application is correct, in a certain working environment with a given soft-error rate? Trying to answer this question using fault injection can be very expensive and time consuming. This paper proposes the baseline for a new methodology, based on microprocessor error probability profiling, that aims at estimating fault injection results without the need of a typical fault injection setup. The proposed methodology is based on two main ideas: a one-time fault-injection analysis of the microprocessor architecture to characterize the probability of successful execution of each of its instructions in presence of a soft-error, and a static and very fast analysis of the control and data flow of the target software application to compute its probability of success. The presented work goes beyond the dependability evaluation problem; it also has the potential to become the backbone for new tools able to help engineers to choose the best hardware and software architecture to structurally maximize the probability of a correct execution of the target softwar

    Sensor failure detection for jet engines using analytical redundance

    Get PDF
    Analytical redundant sensor failure detection, isolation and accommodation techniques for gas turbine engines are surveyed. Both the theoretical technology base and demonstrated concepts are discussed. Also included is a discussion of current technology needs and ongoing Government sponsored programs to meet those needs

    Combined Time and Information Redundancy for SEU-Tolerance in Energy-Efficient Real-Time Systems

    No full text
    Recently the trade-off between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack time to increase the fault-tolerance by performing recovery executions, DVS exploits slack time to save energy. Therefore we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the usage of information redundancy to solve this problem. We demonstrate through analytical and experimental studies that it is possible to achieve both higher transient fault-tolerance (tolerance to single event upsets (SEU)) and less energy using a combination of information and time redundancy when compared with using time redundancy alone. The second aim of this paper is to analyze the interplay of transient-fault tolerance (SEU-tolerance) and adaptive body biasing (ABB) used to reduce static leakage energy, which has not been addressed in previous studies. We show that the same technique (i.e. the combination of time and information redundancy) is applicable to ABB-enabled systems and provides more advantages than time redundancy alone

    Design and implementation of robust embedded processor for cryptographic applications

    Get PDF
    Practical implementations of cryptographic algorithms are vulnerable to side-channel analysis and fault attacks. Thus, some masking and fault detection algorithms must be incorporated into these implementations. These additions further increase the complexity of the cryptographic devices which already need to perform computationally-intensive operations. Therefore, the general-purpose processors are usually supported by coprocessors/hardware accelerators to protect as well as to accelerate cryptographic applications. Using a configurable processor is just another solution. This work designs and implements robust execution units as an extension to a configurable processor, which detect the data faults (adversarial or otherwise) while performing the arithmetic operations. Assuming a capable adversary who can injects faults to the cryptographic computation with high precision, a nonlinear error detection code with high error detection capability is used. The designed units are tightly integrated to the datapath of the configurable processor using its tool chain. For different configurations, we report the increase in the space and time complexities of the configurable processor. Also, we present performance evaluations of the software implementations using the robust execution units. Implementation results show that it is feasible to implement robust arithmetic units with relatively low overhead in an embedded processor

    Robust configurable system design with built-in self-healing

    Get PDF
    The new generations of SRAM-based FPGA (Field Programmable Gate Array) devices, built on nanometre technology, are the preferred choice for the implementation of reconfigurable computing platforms. However, their vulnerability to hard and soft errors is a major weakness to robust system design based on FPGAs. In this paper, a novel Built-In Self-Healing (BISH) methodology, based on modular redundancy and on selfreconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the self-configuration features. Meanwhile, modular redundancy assures that the system still works correctly. This approach leads to a robust system design able to assure high reliability, availability and data integrity

    The Art of Fault Injection

    Get PDF
    Classical greek philosopher considered the foremost virtues to be temperance, justice, courage, and prudence. In this paper we relate these cardinal virtues to the correct methodological approaches that researchers should follow when setting up a fault injection experiment. With this work we try to understand where the "straightforward pathway" lies, in order to highlight those common methodological errors that deeply influence the coherency and the meaningfulness of fault injection experiments. Fault injection is like an art, where the success of the experiments depends on a very delicate balance between modeling, creativity, statistics, and patience
    • 

    corecore