191 research outputs found

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    Applications of Power Electronics:Volume 2

    Get PDF

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    Digital Design of New Chaotic Ciphers for Ethernet Traffic

    Get PDF
    Durante los últimos años, ha habido un gran desarrollo en el campo de la criptografía, y muchos algoritmos de encriptado así como otras funciones criptográficas han sido propuestos.Sin embargo, a pesar de este desarrollo, hoy en día todavía existe un gran interés en crear nuevas primitivas criptográficas o mejorar las ya existentes. Algunas de las razones son las siguientes:• Primero, debido el desarrollo de las tecnologías de la comunicación, la cantidad de información que se transmite está constantemente incrementándose. En este contexto, existen numerosas aplicaciones que requieren encriptar una gran cantidad de datos en tiempo real o en un intervalo de tiempo muy reducido. Un ejemplo de ello puede ser el encriptado de videos de alta resolución en tiempo real. Desafortunadamente, la mayoría de los algoritmos de encriptado usados hoy en día no son capaces de encriptar una gran cantidad de datos a alta velocidad mientras mantienen altos estándares de seguridad.• Debido al gran aumento de la potencia de cálculo de los ordenadores, muchos algoritmos que tradicionalmente se consideraban seguros, actualmente pueden ser atacados por métodos de “fuerza bruta” en una cantidad de tiempo razonable. Por ejemplo, cuando el algoritmo de encriptado DES (Data Encryption Standard) fue lanzado por primera vez, el tamaño de la clave era sólo de 56 bits mientras que, hoy en día, el NIST (National Institute of Standards and Technology) recomienda que los algoritmos de encriptado simétricos tengan una clave de, al menos, 112 bits. Por otro lado, actualmente se está investigando y logrando avances significativos en el campo de la computación cuántica y se espera que, en el futuro, se desarrollen ordenadores cuánticos a gran escala. De ser así, se ha demostrado que algunos algoritmos que se usan actualmente como el RSA (Rivest Shamir Adleman) podrían ser atacados con éxito.• Junto al desarrollo en el campo de la criptografía, también ha habido un gran desarrollo en el campo del criptoanálisis. Por tanto, se están encontrando nuevas vulnerabilidades y proponiendo nuevos ataques constantemente. Por consiguiente, es necesario buscar nuevos algoritmos que sean robustos frente a todos los ataques conocidos para sustituir a los algoritmos en los que se han encontrado vulnerabilidades. En este aspecto, cabe destacar que algunos algoritmos como el RSA y ElGamal están basados en la suposición de que algunos problemas como la factorización del producto de dos números primos o el cálculo de logaritmos discretos son difíciles de resolver. Sin embargo, no se ha descartado que, en el futuro, se puedan desarrollar algoritmos que resuelvan estos problemas de manera rápida (en tiempo polinomial).• Idealmente, las claves usadas para encriptar los datos deberían ser generadas de manera aleatoria para ser completamente impredecibles. Dado que las secuencias generadas por generadores pseudoaleatorios, PRNGs (Pseudo Random Number Generators) son predecibles, son potencialmente vulnerables al criptoanálisis. Por tanto, las claves suelen ser generadas usando generadores de números aleatorios verdaderos, TRNGs (True Random Number Generators). Desafortunadamente, los TRNGs normalmente generan los bits a menor velocidad que los PRNGs y, además, las secuencias generadas suelen tener peores propiedades estadísticas, lo que hace necesario que pasen por una etapa de post-procesado. El usar un TRNG de baja calidad para generar claves, puede comprometer la seguridad de todo el sistema de encriptado, como ya ha ocurrido en algunas ocasiones. Por tanto, el diseño de nuevos TRNGs con buenas propiedades estadísticas es un tema de gran interés.En resumen, es claro que existen numerosas líneas de investigación en el ámbito de la criptografía de gran importancia. Dado que el campo de la criptografía es muy amplio, esta tesis se ha centra en tres líneas de investigación: el diseño de nuevos TRNGs, el diseño de nuevos cifradores de flujo caóticos rápidos y seguros y, finalmente, la implementación de nuevos criptosistemas para comunicaciones ópticas Gigabit Ethernet a velocidades de 1 Gbps y 10 Gbps. Dichos criptosistemas han estado basados en los algoritmos caóticos propuestos, pero se han adaptado para poder realizar el encriptado en la capa física, manteniendo el formato de la codificación. De esta forma, se ha logrado que estos sistemas sean capaces no sólo de encriptar los datos sino que, además, un atacante no pueda saber si se está produciendo una comunicación o no. Los principales aspectos cubiertos en esta tesis son los siguientes:• Estudio del estado del arte, incluyendo los algoritmos de encriptado que se usan actualmente. En esta parte se analizan los principales problemas que presentan los algoritmos de encriptado standard actuales y qué soluciones han sido propuestas. Este estudio es necesario para poder diseñar nuevos algoritmos que resuelvan estos problemas.• Propuesta de nuevos TRNGs adecuados para la generación de claves. Se exploran dos diferentes posibilidades: el uso del ruido generado por un acelerómetro MEMS (Microelectromechanical Systems) y el ruido generado por DNOs (Digital Nonlinear Oscillators). Ambos casos se analizan en detalle realizando varios análisis estadísticos a secuencias obtenidas a distintas frecuencias de muestreo. También se propone y se implementa un algoritmo de post-procesado simple para mejorar la aleatoriedad de las secuencias generadas. Finalmente, se discute la posibilidad de usar estos TRNGs como generadores de claves. • Se proponen nuevos algoritmos de encriptado que son rápidos, seguros y que pueden implementarse usando una cantidad reducida de recursos. De entre todas las posibilidades, esta tesis se centra en los sistemas caóticos ya que, gracias a sus propiedades intrínsecas como la ergodicidad o su comportamiento similar al comportamiento aleatorio, pueden ser una buena alternativa a los sistemas de encriptado clásicos. Para superar los problemas que surgen cuando estos sistemas son digitalizados, se proponen y estudian diversas estrategias: usar un sistema de multi-encriptado, cambiar los parámetros de control de los sistemas caóticos y perturbar las órbitas caóticas.• Se implementan los algoritmos propuestos. Para ello, se usa una FPGA Virtex 7. Las distintas implementaciones son analizadas y comparadas, teniendo en cuenta diversos aspectos tales como el consumo de potencia, uso de área, velocidad de encriptado y nivel de seguridad obtenido. Uno de estos diseños, se elige para ser implementado en un ASIC (Application Specific Integrate Circuit) usando una tecnología de 0,18 um. En cualquier caso, las soluciones propuestas pueden ser también implementadas en otras plataformas y otras tecnologías.• Finalmente, los algoritmos propuestos se adaptan y aplican a comunicaciones ópticas Gigabit Ethernet. En particular, se implementan criptosistemas que realizan el encriptado al nivel de la capa física para velocidades de 1 Gbps y 10 Gbps. Para realizar el encriptado en la capa física, los algoritmos propuestos en las secciones anteriores se adaptan para que preserven el formato de la codificación, 8b/10b en el caso de 1 Gb Ethernet y 64b/10b en el caso de 10 Gb Ethernet. En ambos casos, los criptosistemas se implementan en una FPGA Virtex 7 y se diseña un set experimental, que incluye dos módulos SFP (Small Form-factor Pluggable) capaces de transmitir a una velocidad de hasta 10.3125 Gbps sobre una fibra multimodo de 850 nm. Con este set experimental, se comprueba que los sistemas de encriptado funcionan correctamente y de manera síncrona. Además, se comprueba que el encriptado es bueno (pasa todos los test de seguridad) y que el patrón del tráfico de datos está oculto.<br /

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    Measurement of small signal variations using one-dimensional chaotic maps

    Get PDF
    A novel electronic signal Measurement System (MS) based on one-dimensional chaotic maps (Logistic Map (LM) and Tent Map (TM)) has been developed, analysed and tested. Firstly, an in-depth theoretical analysis of each map was performed using MATLAB based computation, and the results demonstrated that the high sensitivity, to initial conditions, of each map was suitable for small signal change detection and measurement. A new 3D representation of chaos map output for varying initial input was also developed allowing the suitability of any one-dimensional chaotic map to be determined. An electronic implementation of the chaotic maps, using low noise and low cost components was developed along with a feedback and a series based MS. The implementations were tested and the experimental results demonstrate a matching within ±1 %, between theory and the electronic implementations, both maps exhibiting behaviour identical to the theoretical maps, ranging from fixed point stability, periodicity and chaos. Each map implementation was tested separately and as part of a complete MS and the results reveal that the proposed measurement technique can detect and measure input signals changes as low as 5 over a 10 V input range, which yields a greater resolution than a MS using an 20 bit Analogue to Digital Converter (ADC) over the same input range. The main advantage of the presented MS is that the accuracy of the measurement is independent of the input range which is not the case with classical approach to measurement based on conditioning circuitry followed by an ADC as the minimum detectable change is directly proportional to the input range

    Journal of Telecommunications and Information Technology, 2010, nr 1

    Get PDF
    kwartalni
    corecore