3,033 research outputs found

    Design and performance evaluation of a state-space based AQM

    Full text link
    Recent research has shown the link between congestion control in communication networks and feedback control system. In this paper, the design of an active queue management (AQM) which can be viewed as a controller, is considered. Based on a state space representation of a linearized fluid flow model of TCP, the AQM design is converted to a state feedback synthesis problem for time delay systems. Finally, an example extracted from the literature and simulations via a network simulator NS (under cross traffic conditions) support our study

    Active queue management with discrete sliding modes in TCP networks

    Get PDF
    In this paper, a new active queue management (AQM) algorithm for data traffic control in TCP/IP networks is developed. The algorithm design is based on the principles of discrete sliding-mode control. Unlike majority of earlier studies, the design procedure considers the effects of both non-negligible delay in transferring data and feedback information and unpredictable capacity variations. The switching function is selected to incorporate a delay compensation mechanism, which ensures efficient network operation even for large bandwidthdelay product connections. The proposed algorithm, implemented as a packet marking scheme, is tested in discrete event ns-2 simulator. The results show that the algorithm provides fast convergence to steady state after sudden, unanticipated capacity changes. By generating smaller overshoots, the proposed algorithm also allows for reducing buffer space requirements to avoid packet loss as compared to the benchmark AQM solutions

    Active Queue Management via Event-Driven Feedback Control

    Get PDF
    Active queue management (AQM) is investigated to avoid incipient congestion in gateways to complement congestion control run by the transport layer protocol such as the TCP. Most existing work on AQM can be categorized as (1) ad-hoc event-driven control and (2) time-driven feedback control approaches based on control theory. Ad hoc event-driven approaches for congestion control, such as RED (random early detection), lack a mathematical model. Thus, it is hard to analyze their dynamics and tune the parameters. Time-driven control theoretic approaches based on solid mathematical models have drawbacks too. As they sample the queue length and run AQM algorithm at every fixed time interval, they may not be adaptive enough to an abrupt load surge. Further, they can be executed unnecessarily often under light loads due to the time-driven nature. To seamlessly integrate the advantages of both event-driven and control-theoretic time-driven approaches, we present an event-driven feedback control approach based on formal control theory. As our approach is based on a mathematical model, its performance is more analyzable and predictable than ad hoc event-driven approaches are. Also, it is more reactive to dynamic load changes due to its event-driven nature. Our simulation results show that our event-driven controller effectively maintains the queue length around the specified set-point. It achieves shorter E2E (end-to-end) delays and smaller E2E delay fluctuations than several existing AQM approaches, which are ad hoc event-driven and based on time-driven control theory, while achieving almost the same E2E delays and E2E delay fluctuations as the two other advanced control theoretic AQM approaches. Further, our AQM algorithm is invoked much less frequently than the tested baseline

    Compensation of distributed delays in integrated communication and control systems

    Get PDF
    The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor

    Design of Feedback Controls Supporting TCP Based on the State–Space Approach

    Get PDF
    This paper investigates how to design feedback controls supporting transmission control protocol (TCP) based on the state-space approach for the linearized system of the well-known additive increase multiplicative decrease (AIMD) dynamic model. We formulate the feedback control design problem as state-space models without assuming its structure in advance. Thereby, we get three results that have not been observed by previous studies on the congestion control problem. 1) In order to fully support TCP, we need a proportional-derivative (PD)-type state-feedback control structure in terms of queue length (or RTT: round trip time). This backs up the conjecture in the networking literature that the AQM RED is not enough to control TCP dynamic behavior, where RED can be classified as a P-type AQM (or as an output feedback control for the linearized AIMD model). 2) In order to fully support TCP in the presence of delays, we derive delay-dependent feedback control structures to compensate for delays explicitly under the assumption that RTT, capacity and number of sources are known, where all existing AQMs including RED, REM/PI and AVQ are delay-independent controls. 3) In an attempt to interpret different AQM structures in a unified manner rather than to compare them via simulations, we propose a PID-type mathematical framework using integral control action. As a performance index to measure the deviation of the closed-loop system from an equilibrium point, we use a linear quadratic (LQ) cost of the transients of state and control variables such as queue length, aggregate rate, jitter in the aggregate rate, and congestion measure. Stabilizing gains of the feedback control structures are obtained minimizing the LQ cost. Then, we discuss the impact of the control structure on performance using the PID-type mathematical framework. All results are extended to the case of multiple links and heterogeneous delays

    Dynamic Speed Harmonization

    Full text link
    In the last decade, the accelerated advancements in manufacturing techniques and material science enabled the automotive industry to manufacture commercial vehicles at more affordable rates. This, however, brought about roadways having to accommodate an ever-increasing number of vehicles every day. However, some roadways, during specific hours of the day, had already been on the brink of reaching their capacity to withstand the number of vehicles travelling on them. Hence, overcrowded roadways create slow traffic, and sometimes, bottlenecks. In this paper, a Dynamic Speed Harmonization (DSH) algorithm that regulates the speed of a vehicle to prevent it from being affected by bottlenecks has been presented. First, co-simulations were run between MATLAB Simulink and CarSim to test different deceleration profiles. Then, Hardware-in-the-Loop (HIL) simulations were run with a Road Side Unit (RSU), which emulated a roadside detector that spotted bottlenecks and sent information to the Connected Vehicle about the position of the queue and the average speed of the vehicles at the queue. The DSH algorithm was also tested on a track to compare the performance of the different deceleration profiles in terms of ride comfort.Comment: 7 pages, 5 figure

    Explicit congestion control algorithms for time-varying capacity media

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    corecore