153 research outputs found

    Multiple-input multiple-output proportional-integral-proportional-derivative type fuzzy logic controller design for a twin rotor system

    Get PDF
    A new multiple-input multiple-output (MIMO) proportional-integral-proportional-derivative (PIPD) type fuzzy logic controller (FLC) is proposed for pitch and yaw motion control of a twin rotor system in this study. A fuzzy feedforward compensator for gravity effects on pitch motion of the twin rotor is also designed. Fuzzy logic was preferred for controller design since it can be applied to nonlinear systems and do not require the mathematical model of the system. The twin rotor system is a highly nonlinear system that includes coupling effects between pitch and yaw motions and has similar dynamics to that of a helicopter in certain aspects. Experimental results demonstrate that the proposed controller is able to stabilize the system along with good trajectory tracking performance

    Tuning of Nonlinear PID Controller for TRMS Using Evolutionary Computation Methods

    Get PDF
    In this paper, the Twin rotor MIMO system (TRMS) is tuned by Nonlinear PID controller using Evolutionary Computation methods. The proposed Nonlinear PID controller, used to tune TRMS, improves the system performance with additional degrees of freedom. Evolutionary Computation methods such as Differential Search Algorithm (DSA), real coded Genetic Algorithm (RGA) with simulated binary crossover (SBX) and Particle Swarm optimization (PSO) and Gravitational Search Algorithm (GSA) are used to determine the optimal parameters of the proposed controller by minimizing Integral Square Error (ISE) for rotor response of TRMS. SIMULINK MATLAB software is used for simulating the system. The statistical performance of the controller is analysed among twenty independent trials by taking best, worst, mean and standard deviations of ISE. Simulation results reveal that TRMS system tuned by nonlinear PID controller using Particle Swarm optimization (PSO) is better than the other methods

    A QFT robust controller as a remedy for TRMS

    Get PDF
    Control of a Twin Rotor Multi-input Multi-output System (TRMS) is not a simple work. Because it has complex nonlinear dynamics, cross-coupling, uncertainties, and instability. This paper provides a practical method for control of a TRMS, named Quantitative Feedback Theory (QFT) as one of the robust approaches. Firstly, the TRMS set and modeling procedure are introduced. Secondly, the nonlinear and linear equations of electrical and mechanical parts in both vertical and horizontal planes are presented. Next, using the QFT method, a controller is designed for motion in each plane. Finally, the robustness of the control strategy is illustrated by simulations of vertical and horizontal motions, including controller and pre-filter in the presence of uncertainties. The results demonstrate that the proposed robust controller can guarantee the system stabilization, as well as pitch and yaw tracking of TRMS

    Hybrid active force control for fixed based rotorcraft

    Get PDF
    Disturbances are considered major challenges faced in the deployment of rotorcraft unmanned aerial vehicle (UAV) systems. Among different types of rotorcraft systems, the twin-rotor helicopter and quadrotor models are considered the most versatile flying machines nowadays due to their range of applications in the civilian and military sectors. However, these systems are multivariate and highly non-linear, making them difficult to be accurately controlled. Their performance could be further compromised when they are operated in the presence of disturbances or uncertainties. This dissertation presents an innovative hybrid control scheme for rotorcraft systems to improve disturbance rejection capability while maintaining system stability, based on a technique called active force control (AFC) via simulation and experimental works. A detailed dynamic model of each aerial system was derived based on the Euler–Lagrange and Newton-Euler methods, taking into account various assumptions and conditions. As a result of the derived models, a proportional-integral-derivative (PID) controller was designed to achieve the required altitude and attitude motions. Due to the PID's inability to reject applied disturbances, the AFC strategy was incorporated with the designed PID controller, to be known as the PID-AFC scheme. To estimate control parameters automatically, a number of artificial intelligence algorithms were employed in this study, namely the iterative learning algorithm and fuzzy logic. Intelligent rules of these AI algorithms were designed and embedded into the AFC loop, identified as intelligent active force control (IAFC)-based methods. This involved, PID-iterative learning active force control (PID-ILAFC) and PID-fuzzy logic active force control (PID-FLAFC) schemes. To test the performance and robustness of these proposed hybrid control systems, several disturbance models were introduced, namely the sinusoidal wave, pulsating, and Dryden wind gust model disturbances. Integral square error was selected as the index performance to compare between the proposed control schemes. In this study, the effectiveness of the PID-ILAFC strategy in connection with the body jerk performance was investigated in the presence of applied disturbance. In terms of experimental work, hardware-in-the-loop (HIL) experimental tests were conducted for a fixed-base rotorcraft UAV system to investigate how effective are the proposed hybrid PID-ILAFC schemes in disturbance rejection. Simulated results, in time domains, reveal the efficacy of the proposed hybrid IAFC-based control methods in the cancellation of different applied disturbances, while preserving the stability of the rotorcraft system, as compared to the conventional PID controller. In most of the cases, the simulated results show a reduction of more than 55% in settling time. In terms of body jerk performance, it was improved by around 65%, for twin-rotor helicopter system, and by a 45%, for quadrotor system. To achieve the best possible performance, results recommend using the full output signal produced by the AFC strategy according to the sensitivity analysis. The HIL experimental tests results demonstrate that the PID-ILAFC method can improve the disturbance rejection capability when compared to other control systems and show good agreement with the simulated counterpart. However, the selection of the appropriate learning parameters and initial conditions is viewed as a crucial step toward this improved performance

    Nonlinear Cascade-Based Control for a Twin Rotor MIMO System

    Get PDF
    This research is focused on the development of a nonlinear cascade-based control algorithm for a laboratory helicopter-denominated Twin Rotor MIMO System (TRMS). The TRMS is an underactuated nonlinear multivariable system, characterised by a coupling effect between the dynamics of the propellers and the body structure, which is caused by the action-reaction principle originated in the acceleration and deceleration of the propeller groups. Firstly, this work introduces an extensive description of the platform’s dynamics, which was carried out by splitting the system into its electrical and mechanical parts. Secondly, we present a design of a nonlinear cascade-based control algorithm that locally guarantees an asymptotically and exponentially stable behaviour of the controlled generalised coordinates of the TRMS. Lastly, a demonstration of the effectiveness of the proposed approach is provided by means of numerical simulations performed under the MATLAB®/Simulink® environment

    Tip position control of single flexible manipulators based on LQR with the Mamdani model

    Get PDF
    Flexible manipulators have been actively used in various fields, such as aerospace, industry and medical treatment. It remains that the tip of the flexible manipulator should accurately trail the target trajectory without vibration. This paper proposes a novel method of the tip position control of a single flexible manipulator based on LQR with the Mamdani model. Firstly, using the assumed mode method and the Lagrange equations, the dynamic model of the single flexible manipulator is established. Then, the state equations are derived by the dynamic model. Based on the Mamdani model, the fuzzy algorithm is added to the traditional LQR control, and the self-adaptive adjustment of the LQR control variable R is conducted, which improves the adaptability of the control system. Finally, numerical simulations and experiments are presented. The results demonstrate that the novel control method presented in this paper can rapidly achieve the location in the position control and effectively suppress the elastic vibration of the single flexible manipulator, which has more considerable effect compared with the traditional LQR control method

    Particle swarm optimization and spiral dynamic algorithm-based interval type-2 fuzzy logic control of triple-link inverted pendulum system: A comparative assessment

    Get PDF
    This paper presents investigations into the development of an interval type-2 fuzzy logic control (IT2FLC) mechanism integrated with particle swarm optimization and spiral dynamic algorithm. The particle swarm optimization and spiral dynamic algorithm are used for enhanced performance of the IT2FLC by finding optimised values for input and output controller gains and parameter values of IT2FLC membership function as comparison purpose in order to identify better solution for the system. A new model of triple-link inverted pendulum on two-wheels system, developed within SimWise 4D software environment and integrated with Matlab/Simulink for control purpose. Several tests comprising system stabilization, disturbance rejection and convergence accuracy of the algorithms are carried out to demonstrate the robustness of the control approach. It is shown that the particle swarm optimization-based control mechanism performs better than the spiral dynamic algorithm-based control in terms of system stability, disturbance rejection and reduce noise. Moreover, the particle swarm optimization-based IT2FLC shows better performance in comparison to previous research. It is envisaged that this system and control algorithm can be very useful for the development of a mobile robot with extended functionality

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis

    Contribution to reliable control of dynamic systems

    Get PDF
    This thesis presents sorne contributions to the field of Health-Aware Control (HAC) of dynamic systems. In the first part of this thesis, a review of the concepts and methodologies related to reliability versus degradation and fault tolerant control versus health-aware control is presented. Firstly, in an attempt to unify concepts, an overview of HAC, degradation, and reliability modeling including some of the most relevant theoretical and applied contributions is given. Moreover, reliability modeling is formalized and exemplified using the structure function, Bayesian networks (BNs) and Dynamic Bayesian networks (DBNs) as modeling tools in reliability analysis. In addition, some Reliability lmportance Measures (RIMs) are presented. In particular, this thesis develops BNs models for overall system reliability analysis through the use of Bayesian inference techniques. Bayesian networks are powerful tools in system reliability assessment due to their flexibility in modeling the reliability structure of complex systems. For the HAC scheme implementation, this thesis presents and discusses the integration of actuators health information by means of RIMs and degradation in Model Predictive Control (MPC) and Linear Quadratic Regulator algorithms. In the proposed strategies, the cost function parameters are tuned using RIMs. The methodology is able to avoid the occurrence of catastrophic and incipient faults by monitoring the overall system reliability. The proposed HAC strategies are applied to a Drinking Water Network (DWN) and a multirotor UAV system. Moreover, a third approach, which uses MPC and restricts the degradation of the system components is applied to a twin rotor system. Finally, this thesis presents and discusses two reliability interpretations. These interpretations, namely instantaneous and expected, differ in the manner how reliability is evaluated and how its evolution along time is considered. This comparison is made within a HAC framework and studies the system reliability under both approaches.Aquesta tesi presenta algunes contribucions al camp del control basat en la salut dels components "Health-Aware Control" (HAC) de sistemes dinàmics. A la primera part d'aquesta tesi, es presenta una revisió dels conceptes i metodologies relacionats amb la fiabilitat versus degradació, el control tolerant a fallades versus el HAC. En primer lloc, i per unificar els conceptes, s'introdueixen els conceptes de degradació i fiabilitat, models de fiabilitat i de HAC incloent algunes de les contribucions teòriques i aplicades més rellevants. La tesi, a més, el modelatge de la fiabilitat es formalitza i exemplifica utilitzant la funció d'estructura del sistema, xarxes bayesianes (BN) i xarxes bayesianes dinamiques (DBN) com a eines de modelat i anàlisi de la fiabilitat com també presenta algunes mesures d'importància de la fiabilitat (RIMs). En particular, aquesta tesi desenvolupa models de BNs per a l'anàlisi de la fiabilitat del sistema a través de l'ús de tècniques d'inferència bayesiana. Les xarxes bayesianes són eines poderoses en l'avaluació de la fiabilitat del sistema gràcies a la seva flexibilitat en el modelat de la fiabilitat de sistemes complexos. Per a la implementació de l?esquema de HAC, aquesta tesi presenta i discuteix la integració de la informació sobre la salut i degradació dels actuadors mitjançant les RIMs en algoritmes de control predictiu basat en models (MPC) i control lineal quadràtic (LQR). En les estratègies proposades, els paràmetres de la funció de cost s'ajusten utilitzant els RIMs. Aquestes tècniques de control fiable permetran millorar la disponibilitat i la seguretat dels sistemes evitant l'aparició de fallades a través de la incorporació d'aquesta informació de la salut dels components en l'algoritme de control. Les estratègies de HAC proposades s'apliquen a una xarxa d'aigua potable (DWN) i a un sistema UAV multirrotor. A més, un tercer enfocament fent servir la degradació dels actuadors com a restricció dins l'algoritme de control MPC s'aplica a un sistema aeri a dos graus de llibertat (TRMS). Finalment, aquesta tesi també presenta i discuteix dues interpretacions de la fiabilitat. Aquestes interpretacions, nomenades instantània i esperada, difereixen en la forma en què s'avalua la fiabilitat i com es considera la seva evolució al llarg del temps. Aquesta comparació es realitza en el marc del control HAC i estudia la fiabilitat del sistema en tots dos enfocaments.Esta tesis presenta algunas contribuciones en el campo del control basado en la salud de los componentes “Health-Aware Control” (HAC) de sistemas dinámicos. En la primera parte de esta tesis, se presenta una revisión de los conceptos y metodologíasrelacionados con la fiabilidad versus degradación, el control tolerante a fallos versus el HAC. En primer lugar, y para unificar los conceptos, se introducen los conceptos de degradación y fiabilidad, modelos de fiabilidad y de HAC incluyendo algunas de las contribuciones teóricas y aplicadas más relevantes. La tesis, demás formaliza y ejemplifica el modelado de fiabilidad utilizando la función de estructura del sistema, redes bayesianas (BN) y redes bayesianas diná-micas (DBN) como herramientas de modelado y análisis de fiabilidad como también presenta algunas medidas de importancia de la fiabilidad (RIMs). En particular, esta tesis desarrolla modelos de BNs para el análisis de la fiabilidad del sistema a través del uso de técnicas de inferencia bayesiana. Las redes bayesianas son herramientas poderosas en la evaluación de la fiabilidad del sistema gracias a su flexibilidad en el modelado de la fiabilidad de sistemas complejos. Para la implementación del esquema de HAC, esta tesis presenta y discute la integración de la información sobre la salud y degradación de los actuadores mediante las RIMs en algoritmos de control predictivo basado en modelos (MPC) y del control cuadrático lineal (LQR). En las estrategias propuestas, los parámetros de la función de coste se ajustan utilizando las RIMs. Estas técnicas de control fiable permitirán mejorar la disponibilidad y la seguridad de los sistemas evitando la aparición de fallos a través de la incorporación de la información de la salud de los componentes en el algoritmo de control. Las estrategias de HAC propuestas se aplican a una red de agua potable (DWN) y a un sistema UAV multirotor. Además, un tercer enfoque que usa la degradación de los actuadores como restricción en el algoritmo de control MPC se aplica a un sistema aéreo con dos grados de libertad (TRMS). Finalmente, esta tesis también presenta y discute dos interpretaciones de la fiabilidad. Estas interpretaciones, llamadas instantánea y esperada, difieren en la forma en que se evalúa la fiabilidad y cómo se considera su evolución a lo largo del tiempo. Esta comparación se realiza en el marco del control HAC y estudia la fiabilidad del sistema en ambos enfoques

    Sustainable aviation electrification: a comprehensive review of electric propulsion system architectures, energy management, and control

    Get PDF
    The civil aviation sector plays an increasingly significant role in transportation sustainability in the environmental, economic, and social dimensions. Driven by the concerns of sustainability in the aviation sector, more electrified aircraft propulsion technologies have emerged and form a very promising approach to future sustainable and decarbonized aviation. This review paper aims to provide a comprehensive and broad-scope survey of the recent progress and development trends in sustainable aviation electrification. Firstly, the architectures of electrified aircraft propulsion are presented with a detailed analysis of the benefits, challenges, and studies/applications to date. Then, the challenges and technical barriers of electrified aircraft propulsion control system design are discussed, followed by a summary of the control methods frequently used in aircraft propulsion systems. Next, the mainstream energy management strategies are investigated and further utilized to minimize the block fuel burn, emissions, and economic cost. Finally, an overview of the development trends of aviation electrification is provided
    corecore