6,515 research outputs found

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    Modeling of Optimized Neuro-Fuzzy Logic Based Active Vibration Control Method for Automotive Suspension

    Get PDF
    In this thesis, an active vibration control system was developed. The control system was developed and tested using a quarter car model of an adaptive suspension system. For active vibration control, an actuator was implemented in addition to the commonly used passive spring damper system. Due to nature of unpredictability of force required two different fuzzy inference system (FIS) were developed for the actuator. First a sequential fuzzy set was built, that resulted lower vertical displacement compared to basic damper spring model, but system had limited effect with disturbances of higher magnitude and continuous vibrations (rough road). To improve the performance of the sequential fuzzy set, the main fuzzy set was improved using an adaptive neuro fuzzy inference system (ANFIS). This model increased the performance substantially, especially for rough road and high magnitude disturbance scenarios. Finally, the suspension’s spring constant and damping co-efficient was optimized using a genetic algorithm to further improve the vibration control properties to achieve a balance of both ride stability and comfort. The final result is improved performance of the suspension system

    Hybrid stabilizing control on a real mobile robot

    Get PDF
    To establish empirical verification of a stabilizing controller for nonholonomic systems, the authors implement a hybrid control concept on a 2-DOF mobile robot. Practical issues of velocity control are also addressed through a velocity controller which transforms the mobile robot to a new system with linear and angular velocity inputs. Experiments in the physical meaning of different controller components provide insights which result in significant improvements in controller performanc

    Artificial neural networks for vibration based inverse parametric identifications: A review

    Get PDF
    Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    State observer based adaptive sliding mode control for semi-active suspension systems

    Get PDF
    In order to improve ride comfort and handling stability of a vehicle, this paper will present an adaptive sliding mode control algorithm for semi-active suspension systems. A hybrid reference model is proposed which combines virtues of sky-hook and ground-hook control logics, and chooses a more suitable compromise for a given application. The stability of the adaptive sliding mode control strategy is analyzed by means of Lypunov function approach taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. A state observer is designed based on unscented Kalman filter to estimate the suspension states in real-time for the realization of the controller, which improves the robustness of the control strategy and is adaptive to different types of road profiles. Finally, the performances of the controller are validated under the following two typical road profiles: the random road and half-sine speed bump road. The simulation results show that the proposed control algorithm can offer a good coordination between ride comfort and handling stability of a vehicle
    corecore