29,531 research outputs found

    Towards Convergence: How to Do Transdisciplinary Environmental Health Disparities Research.

    Get PDF
    Increasingly, funders (i.e., national, public funders, such as the National Institutes of Health and National Science Foundation in the U.S.) and scholars agree that single disciplines are ill equipped to study the pressing social, health, and environmental problems we face alone, particularly environmental exposures, increasing health disparities, and climate change. To better understand these pressing social problems, funders and scholars have advocated for transdisciplinary approaches in order to harness the analytical power of diverse and multiple disciplines to tackle these problems and improve our understanding. However, few studies look into how to conduct such research. To this end, this article provides a review of transdisciplinary science, particularly as it relates to environmental research and public health. To further the field, this article provides in-depth information on how to conduct transdisciplinary research. Using the case of a transdisciplinary, community-based, participatory action, environmental health disparities study in California's Central Valley provides an in-depth look at how to do transdisciplinary research. Working with researchers from the fields of social sciences, public health, biological engineering, and land, air, and water resources, this study aims to answer community residents' questions related to the health disparities they face due to environmental exposure. Through this case study, I articulate not only the logistics of how to conduct transdisciplinary research but also the logics. The implications for transdisciplinary methodologies in health disparity research are further discussed, particularly in the context of team science and convergence science

    Implementation Action Plan for organic food and farming research

    Get PDF
    The Implementation Action Plan completes TP Organics’ trilogy of key documents of the Research Vision to 2025 (Niggli et al 2008) and the Strategic Research Agenda (Schmid et al 2009). The Implementation Action Plan addresses important areas for a successful implementation of the Strategic Research Agenda. It explores the strength of Europe’s organic sector on the world stage with about one quarter of the world’s organic agricultural land in 2008 and accounting for more than half of the global organic market. The aims and objectives of organic farming reflect a broad range of societal demands on the multiple roles of agriculture and food production of not only producing commodities but also ecosystem services. These are important for Europe’s economic success, the resilience of its farms and prosperity in its rural areas. The organic sector is a leading market for quality and authenticity: values at the heart of European food culture. Innovation is important across the EU economy, and no less so within the organic sector. The Implementation Action Plan devotes its third chapter to considering how innovation can be stimulated through organic food and farming research and, crucially, translated into changes in business and agricultural practice. TP Organics argues for a broad understanding of innovation that includes technology, know-how and social/organisational innovations. Accordingly, innovation can involve different actors throughout the food sector. Many examples illustrate innovations in the organic sector includign and beyond technology. The various restrictions imposed by organic standards have driven change and turned organic farms and food businesses into creative living laboratories for smart and green innovations and the sector will continue to generate new examples. The research topics proposed by TP Organics in the Strategic Research Agenda can drive innovation in areas as wide ranging as production practices for crops, technologies for livestock, food processing, quality management, on-farm renewable energy or insights into the effects of consumption of organic products on disease and wellbeing and life style of citizens. Importantly, many approaches developed within the sector are relevant and useful beyond the specific sector. The fourth chapter addresses knowledge management in organic agriculture, focusing on the further development of participatory research methods. Participatory (or trans-disciplinary) models recognise the worth and importance of different forms of knowledge and reduced boundaries between the generators and the users of knowledge, while respecting and benefitting from transparent division of tasks. The emphasis on joint creation and exchange of knowledge makes them valuable as part of a knowledge management toolkit as they have the capacity to enhance the translation of research outcomes into practical changes and lead to real-world progress. The Implementation Action Plan argues for the wider application of participatory methods in publicly-funded research and also proposes some criteria for evaluating participatory research, such as the involvement and satisfaction of stakeholders as well as real improvements in sustainability and delivery of public goods/services. European agriculture faces specific challenges but at the same time Europe has a unique potential for the development of agro-ecology based solutions that must be supported through well focused research. TP Organics believes that the most effective approaches in agriculture and food research will be systems-based, multi- and trans-disciplinary, and that in the development of research priorities, the interconnections between biodiversity, dietary diversity, functional diversity and health must be taken into account. Chapter five of the action plan identifies six themes which could be used to organise research and innovation activities in agriculture under Europe’s 8th Framework Programme on Research Cooperation: • Eco-functional intensification – A new area of agricultural research which aims to harness beneficial activities of the ecosystem to increase productivity in agriculture. • The economics of high output / low input farming Developing reliable economic and environmental assessments of new recycling, renewable-based and efficiency-boosting technologies for agriculture. • Health care schemes for livestock Shifting from therapeutics to livestock health care schemes based on good husbandry and disease prevention. • Resilience and “sustainagility” Dealing with a more rapidly changing environment by focusing on ‘adaptive capacity’ to help build resilience of farmers, farms and production methods. • From farm diversity to food diversity and health and wellbeing of citizens Building on existing initiatives to reconnect consumers and producers, use a ‘whole food chain’ approach to improve availability of natural and authentic foods. • Creating centres of innovation in farming communities A network of centres in Europe applying and developing trans-disciplinary and participatory scientific approaches to support innovation among farmers and SMEs and improving research capacities across Europe

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    SIMDAT

    No full text

    How to Create an Innovation Accelerator

    Full text link
    Too many policy failures are fundamentally failures of knowledge. This has become particularly apparent during the recent financial and economic crisis, which is questioning the validity of mainstream scholarly paradigms. We propose to pursue a multi-disciplinary approach and to establish new institutional settings which remove or reduce obstacles impeding efficient knowledge creation. We provided suggestions on (i) how to modernize and improve the academic publication system, and (ii) how to support scientific coordination, communication, and co-creation in large-scale multi-disciplinary projects. Both constitute important elements of what we envision to be a novel ICT infrastructure called "Innovation Accelerator" or "Knowledge Accelerator".Comment: 32 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Transition UGent: a bottom-up initiative towards a more sustainable university

    Get PDF
    The vibrant think-tank ‘Transition UGent’ engaged over 250 academics, students and people from the university management in suggesting objectives and actions for the Sustainability Policy of Ghent University (Belgium). Founded in 2012, this bottom-up initiative succeeded to place sustainability high on the policy agenda of our university. Through discussions within 9 working groups and using the transition management method, Transition UGent developed system analyses, sustainability visions and transition paths on 9 fields of Ghent University: mobility, energy, food, waste, nature and green, water, art, education and research. At the moment, many visions and ideas find their way into concrete actions and policies. In our presentation we focused on the broad participative process, on the most remarkable structural results (e.g. a formal and ambitious Sustainability Vision and a student-led Sustainability Office) and on recent actions and experiments (e.g. a sustainability assessment on food supply in student restaurants, artistic COP21 activities, ambitious mobility plans, food leftovers projects, an education network on sustainability controversies, a transdisciplinary platform on Sustainable Cities). We concluded with some recommendations and reflections on this transition approach, on the important role of ‘policy entrepreneurs’ and student involvement, on lock-ins and bottlenecks, and on convincing skeptical leaders

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center
    • …
    corecore