337 research outputs found

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    Performance Improvement of QPSK Signal Predetection EGC Diversity Receiver

    Get PDF
    This paper proposes a modification of quadrature phase-shift-keying (QPSK) signal diversity reception with predetection equal gain combiner (EGC). The EGC combining is realized by using the constant modulus algorithm (CMA). Carrier synchronization is performed by the phase locked loop (PLL). Comparative analysis of the modified and ordinary diversity receiver in the presence of carrier frequency offset in the additive white Gaussian noise (AWGN) channel, as well as in Rician fading channel is shown. The proposed diversity receiver allows significant frequency offset compared to the diversity receiver that uses only PLL, and the error probability of the proposed receiver is very close to the error probability of the receiver with only PLL and zero frequency offset. The functionality of the proposed diversity receiver, as well as its properties is experimentally verified on a system based on universal software radio peripheral (USRP) hardware. The performed comparison confirms the expected behavior of the system
    corecore