521 research outputs found

    Meeskonna rUNSWift s ¨usteemi p˜ohjal k¨aitumisloogika arendamine 2015 RoboCup v˜oistluse jaoks

    Get PDF
    The RoboCup Standard Platform League has two teams, each consisting of five robots play football against each other in a semi-controlled setting. The robots used have the same hardware and modifications are not allowed. The purpose of this thesis was to find a method to improve the overall performance displayed during 2014 RoboCup and implement the method(s). During the course of the project, a new codebase, developed by team rUNSWift, was evaluated, tested and then adopted as it offered improvements compared to the Austin Villa codebase used in 2014. As the codebase offered only basic core functionality, a behaviour module needed to be implemented to offer both low- and high-level behaviours. The behaviours developed provide low-level functionality for movement, ball alignment and targeting and high-level functionality for basic soccer gameplay according to RoboCup 2015 rules. The individual strategy mimics the system used in 2014 with the main difference being the ability to recognize our teammates and then use that information to avoid collisions while trying to hit a ball that is in the common playing area of the two robots. The kick and walk performance appear more stable, as they are both dynamically generated using rUNSWift’s motion system. The walk is also offers greater configurability and needs careful calibration for tuning the input parameters

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Humanoid Robot NAO : developing behaviours for soccer humanoid robots

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Humanoid Robot Kick in Motion Ability for Playing Robotic Soccer

    Get PDF
    Robotics and Artificial Intelligence are two deeply intertwined fields of study, currently experiencing formidable growth. To foster these developments, the RoboCup initiative is a fantastic test bed to experiment new approaches. This dissertation seeks to gather these possibilities to design and implement a humanoid robotic kick system employing deep neural networks, capable of fluidly kicking a ball while walking. This dissertation's work is rooted in the groundwork laid by previous FCPortugal3D teams so as to take the existing algorithms and skills into its consideration. In this way, a transition between a dynamic movement situation and one where the agent is kicking is achieved. Furthermore, it uses the new agent framework developed by the FCPortugal3D team so as to allow these tests to be built upon for future situations with ease

    06251 Abstracts Collection -- Multi-Robot Systems: Perception, Behaviors, Learning, and Action

    Get PDF
    From 19.06.06 to 23.06.06, the Dagstuhl Seminar 06251 ``Multi-Robot Systems: Perception, Behaviors, Learning, and Action\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Moving object detection for interception by a humanoid robot

    Get PDF
    Interception of a moving object with an autonomous robot is an important problem in robotics. It has various application areas, such as in an industrial setting where products on a conveyor would be picked up by a robotic arm, in the military to halt intruders, in robotic soccer (where the robots try to get to the moving ball and try to block an opponent\u27s attempt to pass the ball), and in other challenging situations. Interception, in and of itself, is a complex task that demands a system with target recognition capability, proper navigation and actuation toward the moving target. There are numerous techniques for intercepting stationary targets and targets that move along a certain trajectory (linear, circular, and parabolic). However, much less research has been done for objects moving with an unknown and unpredictable trajectory, changing scale as well and having a different view point, where, additionally, the reference frame of the robot vision system is also dynamic. This study aims to find methods for object detection and tracking using vision system applicable for autonomous interception of a moving humanoid robot target by another humanoid robot. With the use of the implemented vision system, a robot is able to detect, track and intercept in a dynamic environment the moving target, taking into account the unique specifications of a humanoid robot, such as the kinematics of walking. The vision system combined object detection based on Haar/LBP feature classifiers trained on Boosted Cascades\u27\u27 and target contour tracking using optical flow techniques. The constant updates during navigation helped to intercept the object moving with unpredicted trajectory

    Design Development and Analysis of Humanoid Robot

    Get PDF
    Humanoid robots are those resembling their motion and functioning similar to human beings, having capabilities of doing day to day activities similar to man and replace him in every possible way. These activities vary from daily activities such as walking, standing, and bowing, to staircase climbing, running, and kneeling. The current research integrates multiple technologies and methodologies within a system such as 3D printing, Inverse Kinematic programming, Power electronics, Control system, Learning algorithms, Mechanical Design, Human-computer interaction, software tools for collaborative projects. A detailed mechanical design procedure has been carried out in CAD along with its structural analysis in FEA. Followed by Kinematic and Dynamic analysis of the system considering suitable physical properties in V-re
    corecore