873 research outputs found

    Overview of emerging nonvolatile memory technologies

    Get PDF

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Analog Spiking Neuromorphic Circuits and Systems for Brain- and Nanotechnology-Inspired Cognitive Computing

    Get PDF
    Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves the path towards a promising solution to future energy-efficient real-time computing systems. However, existing silicon neuron approaches are designed to faithfully reproduce biological neuron dynamics, and hence they are incompatible with the RRAM synapses, or require extensive peripheral circuitry to modulate a synapse, and are thus deficient in learning capability. As a result, they eliminate most of the density advantages gained by the adoption of nanoscale devices, and fail to realize a functional computing system. This dissertation describes novel hardware architectures and neuron circuit designs that synergistically assemble the fundamental and significant elements for brain-inspired computing. Versatile CMOS spiking neurons that combine integrate-and-fire, passive dense RRAM synapses drive capability, dynamic biasing for adaptive power consumption, in situ spike-timing dependent plasticity (STDP) and competitive learning in compact integrated circuit modules are presented. Real-world pattern learning and recognition tasks using the proposed architecture were demonstrated with circuit-level simulations. A test chip was implemented and fabricated to verify the proposed CMOS neuron and hardware architecture, and the subsequent chip measurement results successfully proved the idea. The work described in this dissertation realizes a key building block for large-scale integration of spiking neural network hardware, and then, serves as a step-stone for the building of next-generation energy-efficient brain-inspired cognitive computing systems

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Semiconductor Memory Applications in Radiation Environment, Hardware Security and Machine Learning System

    Get PDF
    abstract: Semiconductor memory is a key component of the computing systems. Beyond the conventional memory and data storage applications, in this dissertation, both mainstream and eNVM memory technologies are explored for radiation environment, hardware security system and machine learning applications. In the radiation environment, e.g. aerospace, the memory devices face different energetic particles. The strike of these energetic particles can generate electron-hole pairs (directly or indirectly) as they pass through the semiconductor device, resulting in photo-induced current, and may change the memory state. First, the trend of radiation effects of the mainstream memory technologies with technology node scaling is reviewed. Then, single event effects of the oxide based resistive switching random memory (RRAM), one of eNVM technologies, is investigated from the circuit-level to the system level. Physical Unclonable Function (PUF) has been widely investigated as a promising hardware security primitive, which employs the inherent randomness in a physical system (e.g. the intrinsic semiconductor manufacturing variability). In the dissertation, two RRAM-based PUF implementations are proposed for cryptographic key generation (weak PUF) and device authentication (strong PUF), respectively. The performance of the RRAM PUFs are evaluated with experiment and simulation. The impact of non-ideal circuit effects on the performance of the PUFs is also investigated and optimization strategies are proposed to solve the non-ideal effects. Besides, the security resistance against modeling and machine learning attacks is analyzed as well. Deep neural networks (DNNs) have shown remarkable improvements in various intelligent applications such as image classification, speech classification and object localization and detection. Increasing efforts have been devoted to develop hardware accelerators. In this dissertation, two types of compute-in-memory (CIM) based hardware accelerator designs with SRAM and eNVM technologies are proposed for two binary neural networks, i.e. hybrid BNN (HBNN) and XNOR-BNN, respectively, which are explored for the hardware resource-limited platforms, e.g. edge devices.. These designs feature with high the throughput, scalability, low latency and high energy efficiency. Finally, we have successfully taped-out and validated the proposed designs with SRAM technology in TSMC 65 nm. Overall, this dissertation paves the paths for memory technologies’ new applications towards the secure and energy-efficient artificial intelligence system.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore