83,804 research outputs found

    Quantum Algorithm of Imperfect KB Self-organization. Pt II: Robotic Control with Remote Knowledge Base Exchange

    Get PDF
    The technology of knowledge base remote design of the smart fuzzy controllers with the application of the "Soft / quantum computing optimizer" toolkit software developed. The possibility of the transmission and communication the knowledge base using remote connection to the control object considered. Transmission and communication of the fuzzy controller’s knowledge bases implemented through the remote connection with the control object in the online mode apply the Bluetooth or WiFi technologies. Remote transmission of knowledge bases allows designing many different built-in intelligent controllers to implement a variety of control strategies under conditions of uncertainty and risk. As examples, two different models of robots described (mobile manipulator and (“cart-pole” system) inverted pendulum). A comparison of the control quality between fuzzy controllers and quantum fuzzy controller in various control modes is presented. The ability to connect and work with a physical model of control object without using than mathematical model demonstrated. The implemented technology of knowledge base design sharing in a swarm of intelligent robots with quantum controllers. It allows to achieve the goal of control and to gain additional knowledge by creating a new quantum hidden information source based on the synergetic effect of combining knowledge. Development and implementation of intelligent robust controller’s prototype for the intelligent quantum control system of mega-science project NICA (at the first stage for the cooling system of superconducted magnets) is discussed. The results of the experiments demonstrate the possibility of the ensured achievement of the control goal of a group of robots using soft / quantum computing technologies in the design of knowledge bases of smart fuzzy controllers in quantum intelligent control systems. The developed software toolkit allows to design and setup complex ill-defined and weakly formalized technical systems on line

    Intelligent robust control of redun-dant smart robotic arm Pt II: Quantum computing KB optimizer

    Get PDF
    In the first part of the article, two ways of fuzzy controller’s implementation showed. First way applied one controller for all links of the manipulator and showed the best performance. However, such an implementation is not possible in complex control objects, such as a planar redundant manipulator with seven degrees of freedom (DoF). The second way use of separated control when an independent fuzzy controller controls each link. The decomposition control due to a slight decrease in the quality of management has greatly simplified the processes of creating and placing knowledge bases. In this paper (Part II), the advantages and limitations of intelligent control systems based on soft computing technology described. To eliminate the mismatch of the work of separate independent fuzzy controllers, methods for self-organizing coordination control based on quantum computing technologies to create and design robust intelligent control systems for robotic manipulators with 3DOF and 7DOF described. Quantum fuzzy inference as quantum self-organization algorithm of imperfect KBs introduced. Quantum computational intelligence smart toolkit QCOptKBTMbased on quantum fuzzy inference applied. QCOptKBTM toolkit include quantum deep machine learning in on line. Successful engineering application of end-to-end quantum computing information technologies (as quantum sophisticated algorithms and quantum programming) in searching of solutions of algorithmic unsolved problems in classical dynamic intelligent control systems, artificial intelligence (AI) and intelligent cognitive robotics discussed. Quantum computing supremacy in efficient solution of intractable classical tasks as global robustness of redundant robotic manipulator in unpredicted control situations demonstrated. As result, the new synergetic self-organization information effect of robust KB design from responses of imperfect KBs (partial KB robustness cretead on toolkit SCOptKBTM in Pat I) fined

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    A survey of fuzzy control for stabilized platforms

    Full text link
    This paper focusses on the application of fuzzy control techniques (fuzzy type-1 and type-2) and their hybrid forms (Hybrid adaptive fuzzy controller and fuzzy-PID controller) in the area of stabilized platforms. It represents an attempt to cover the basic principles and concepts of fuzzy control in stabilization and position control, with an outline of a number of recent applications used in advanced control of stabilized platform. Overall, in this survey we will make some comparisons with the classical control techniques such us PID control to demonstrate the advantages and disadvantages of the application of fuzzy control techniques

    The control of a multi-variable industrial process, by means of intelligent technology

    Get PDF
    Conventional control systems express control solutions by means of expressions, usually mathematically based. In order to completely express the control solution, a vast amount of data is required. In contrast, knowledge-based solutions require far less plant data and mathematical expression. This reduces development time proportionally. In addition, because this type of processing does not require involved calculations, processing speed is increased, since rule process is separate and all processes can be performed simultaneously. These results in improved product quality, better plant efficiency, simplified process, etc. Within this project, conventional PID control has already been implemented, with the control parameter adjustment and loop tuning being problematic. This is mainly due to a number of external parameters that affects the stability of the process. In maintaining a consistent temperature, for example, the steam flow rate varies, the hot well temperature varies, the ambient may temperature vary. Another contributing factor, the time delay, also affects the optimization of the system, due to the fact that temperature measurement is based on principle of absorption. The normal practice in industry to avoid an unstable control condition is to have an experienced operator to switch the controller to manual, and make adjustments. After obtaining the desired PV, the controller is switched back to automatic. This research project focuses on eliminating this time loss, by implementing a knowledge-based controller, for intelligent decision-making. A FLC design tool, which allows full interaction, whilst designing the control algorithm, was used to optimize the control system. The design tool executed on a PC is connected to a PLC, which in turn is successfully integrated into the process plant

    Investigation of Air Transportation Technology at Princeton University, 1989-1990

    Get PDF
    The Air Transportation Technology Program at Princeton University proceeded along six avenues during the past year: microburst hazards to aircraft; machine-intelligent, fault tolerant flight control; computer aided heuristics for piloted flight; stochastic robustness for flight control systems; neural networks for flight control; and computer aided control system design. These topics are briefly discussed, and an annotated bibliography of publications that appeared between January 1989 and June 1990 is given
    • …
    corecore