5,692 research outputs found

    Exploring the bases for a mixed reality stroke rehabilitation system, Part II: Design of Interactive Feedback for upper limb rehabilitation

    Get PDF
    abstract: Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.The electronic version of this article is the complete one and can be found online at: https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-8-5

    Master of Science

    Get PDF
    thesisStroke is a leading cause of death and adult disability in the United States. Survivors lose abilities that were controlled by the affected area of the brain. Rehabilitation therapy is administered to help survivors regain control of lost functional abilities. The number of sessions that stroke survivors attend are limited to the availability of a clinic close to their residence and the amount of time friends and family can devote to help them commute, as most are incapable of driving. Home-based therapy using virtual reality and computer games have the potential of solving these issues, increasing the amount of independent therapy performed by patients. This thesis presents the design, development and testing of a low-cost system, potentially suitable for use in the home environment. This system is designed for rehabilitation of the impaired upper limb of stroke survivors. A Microsoft Kinect was used to track the position of the patient's hand and the game requires the user to move the arm over increasing large areas by sliding the arm on a support. Studies were performed with six stroke survivors and five control subjects to determine the feasibility of the system. Patients played the game for 6 to 10 days and their game scores, range of motion and Fugl-Meyer scores were recorded for analysis. Statistically significant (p<0.05) differences were found between the game scores of the first and last day of the study. Furthermore, acceptability surveys revealed patients enjoyed playing the game, found this kind of therapy more enjoyable than conventional therapy and were willing to use the system in the home environment. Future work in the system will be focused on larger studies, improving the comfort of patients while playing the game, and developing new games that address cognitive issues and integrate art and therapy

    Exploring the bases for a mixed reality stroke rehabilitation system, Part I: A unified approach for representing action, quantitative evaluation, and interactive feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although principles based in motor learning, rehabilitation, and human-computer interfaces can guide the design of effective interactive systems for rehabilitation, a unified approach that connects these key principles into an integrated design, and can form a methodology that can be generalized to interactive stroke rehabilitation, is presently unavailable.</p> <p>Results</p> <p>This paper integrates phenomenological approaches to interaction and embodied knowledge with rehabilitation practices and theories to achieve the basis for a methodology that can support effective adaptive, interactive rehabilitation. Our resulting methodology provides guidelines for the development of an action representation, quantification of action, and the design of interactive feedback. As Part I of a two-part series, this paper presents key principles of the unified approach. Part II then describes the application of this approach within the implementation of the Adaptive Mixed Reality Rehabilitation (AMRR) system for stroke rehabilitation.</p> <p>Conclusions</p> <p>The accompanying principles for composing novel mixed reality environments for stroke rehabilitation can advance the design and implementation of effective mixed reality systems for the clinical setting, and ultimately be adapted for home-based application. They furthermore can be applied to other rehabilitation needs beyond stroke.</p

    Improving engagement of stroke survivors using desktop virtual Reality-Based serious games for upper limb rehabilitation: A multiple case study

    Get PDF
    Engagement with upper limb rehabilitation post-stroke can improve rehabilitation outcomes. Virtual Reality can be used to make rehabilitation more engaging. In this paper, we propose a multiple case study to determine: (1) whether game design principles (identified in an earlier study as being likely to engage) actually do engage, in practice, a sample of stroke survivors with a Desktop Virtual Reality-based Serious Game designed for upper limb rehabilitation; and (2) what game design factors support the existence of these principles in the game. In this study, we considered 15 principles: awareness , feedback , interactivity , flow , challenge , attention , interest , involvement , psychological absorption , motivation , effort , clear instructions , usability , purpose , and a first-person view . Four stroke survivors used, for a period of 12 weeks, a Virtual Reality-based upper limb rehabilitation system called the Neuromender Rehabilitation System. The stroke survivors were then asked how well each of the 15 principles was supported by the Neuromender Rehabilitation System and how much they felt each principle supported their engagement with the system. All the 15 tested principles had good or reasonable support from the participants as being engaging. Use of feedback was emphasised as an important design factor for supporting the design principles, but there was otherwise little agreement in important design factors among the participants. This indicates that more personalised experiences may be necessary for optimised engagement. The insight gained can be used to inform the design of a larger scale statistical study into what engages stroke survivors with Desktop Virtual Reality-based upper limb rehabilitation

    An integrative framework for tailoring virtual reality based motor rehabilitation after stroke

    Get PDF
    Stroke is a leading cause of life-lasting motor impairments, undermining the quality of life of stroke survivors and their families, and representing a major chal lenge for a world population that is ageing at a dramatic rate. Important technologi cal developments and neuroscientific discoveries have contributed to a better under standing of stroke recovery. Virtual Reality (VR) arises as a powerful tool because it allows merging contributions from engineering, human computer interaction, reha bilitation medicine and neuroscience to propose novel and more effective paradigms for motor rehabilitation. However, despite evidence of the benefits of these novel training paradigms, most of them still rely on the choice of particular technologi cal solutions tailored to specific subsets of patients. Here we present an integrative framework that utilizes concepts of human computer confluence to 1) enable VR neu rorehabilitation through interface technologies, making VR rehabilitation paradigms accessible to wide populations of patients, and 2) create VR training environments that allow the personalization of training to address the individual needs of stroke patients. The use of these features is demonstrated in pilot studies using VR training environments in different configurations: as an online low-cost version, with a myo electric robotic orthosis, and in a neurofeedback paradigm. Finally, we argue about the need of coupling VR approaches and neurocomputational modelling to further study stroke and its recovery process, aiding on the design of optimal rehabilitation programs tailored to the requirements of each user.info:eu-repo/semantics/publishedVersio

    Expanding Rehabilitation Beyond the Clinic—Strategies to Increase Total Restorative Therapy Time for Adults with Hemiplegia

    Get PDF
    Background: Positive neuroplastic changes involving cortical reorganization after stroke are experience dependent and are facilitated more effectively when rehabilitation occurs with high volume. Structured experiences to promote adaptive changes can be implemented during scheduled therapies in any rehabilitation setting. However, time spent in supervised restorative therapy is limited regardless of setting. Time spent in therapeutic activity can be extended by a variety of options that patients can engage in independently, that are low-cost, and that have evidence to support their use as a supplement to physical and occupational therapy. Purpose: The purpose of this paper is to present four such options for supplemental therapeutic activities to support restorative rehabilitation, including mental practice, mirror therapy, low cost virtual reality, and community group exercise classes. A sample of the evidence supporting their feasibility and effectiveness is presented. Practical guidelines for implementation are provided based on the evidence. Recommendations: Evidence based interventions can be used to extend total restorative rehabilitation time as an extension of therapy activities performed in the clinic. They are feasible and effective and can support positive neuroplastic changes in individuals with hemiplegia. These strategies can and should be implemented across practice settings by physical therapists, occupational therapists, and speech language pathologists

    Motion-Based Video Games for Stroke Rehabilitation with Reduced Compensatory Motions

    Get PDF
    Stroke is the leading cause of long-term disability among adults in industrialized nations, with 80% of people who survive strokes experiencing motor disabilities. Recovery requires daily exercise with a high number of repetitions, often without therapist supervision. Motion-based video games can help motivate people with stroke to perform the necessary exercises to recover. We explore the design space of video games for stroke rehabilitation using Wii remotes and webcams as input devices, and share the lessons we learned about what makes games therapeutically useful. We demonstrate the feasibility of using games for home-based stroke therapy with a six-week case study. We show that exercise with games can help recovery even 17 years after the stroke, and share the lessons that we learned for game systems to be used at home as a part of outpatient therapy. As a major issue with home-based therapy, we identify that unsupervised exercises lead to compensatory motions that can impede recovery and create new health issues. We reliably detect torso compensation in shoulder exercises using a custom harness, and develop a game that meaningfully uses both exercise and compensation as inputs. We provide in-game feedback that reduces compensation in a number of ways. We evaluate alternative ways for reducing compensation in controlled experiments and show that using techniques from operant conditioning are effective in significantly reducing compensatory behavior compared to existing approaches
    • 

    corecore