208 research outputs found

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Advancing the Underactuated Grasping Capabilities of Single Actuator Prosthetic Hands

    Get PDF
    The last decade has seen significant advancements in upper limb prosthetics, specifically in the myoelectric control and powered prosthetic hand fields, leading to more active and social lifestyles for the upper limb amputee community. Notwithstanding the improvements in complexity and control of myoelectric prosthetic hands, grasping still remains one of the greatest challenges in robotics. Upper-limb amputees continue to prefer more antiquated body-powered or powered hook terminal devices that are favored for their control simplicity, lightweight and low cost; however, these devices are nominally unsightly and lack in grasp variety. The varying drawbacks of both complex myoelectric and simple body-powered devices have led to low adoption rates for all upper limb prostheses by amputees, which includes 35% pediatric and 23% adult rejection for complex devices and 45% pediatric and 26% adult rejection for body-powered devices [1]. My research focuses on progressing the grasping capabilities of prosthetic hands driven by simple control and a single motor, to combine the dexterous functionality of the more complex hands with the intuitive control of the more simplistic body-powered devices with the goal of helping upper limb amputees return to more active and social lifestyles. Optimization of a prosthetic hand driven by a single actuator requires the optimization of many facets of the hand. This includes optimization of the finger kinematics, underactuated mechanisms, geometry, materials and performance when completing activities of daily living. In my dissertation, I will present chapters dedicated to improving these subsystems of single actuator prosthetic hands to better replicate human hand function from simple control. First, I will present a framework created to optimize precision grasping – which is nominally unstable in underactuated configurations – from a single actuator. I will then present several novel mechanisms that allow a single actuator to map to higher degree of freedom motion and multiple commonly used grasp types. I will then discuss how fingerpad geometry and materials can better grasp acquisition and frictional properties within the hand while also providing a method of fabricating lightweight custom prostheses. Last, I will analyze the results of several human subject testing studies to evaluate the optimized hands performance on activities of daily living and compared to other commercially available prosthesis

    Cost-Effective Prosthetic Hand for Amputees: Challenges and Practical Implementation

    Get PDF
    According to statistics, approximately 160,000 people in Malaysia, out of the current population of 32 million, need prosthetic or orthotic equipment. For individuals who have experienced upper extremity amputations, significant challenges are posed by the loss of functionality and the desire for a cosmetically appealing solution. To address this issue, a cost-effective prosthetic hand was proposed and developed. An overview of existing prosthetic hands is also offered, with an emphasis on cost-effectiveness, challenges, strengths, and weaknesses. The developed prosthetic hand incorporates a practical and underactuated finger mechanism. It is equipped with controllers based on EMG sensors to ensure that optimal responses are achieved during the grasping and releasing of objects. A suitable motor was carefully chosen to facilitate effective grasping and ungrasping activities. The proposed design was realized using SolidWorks and a 3D Printer. The capabilities of the prosthetic hand were demonstrated through a series of tests involving various objects, including pliers, a screwdriver, and a phone. The results indicate that objects of different sizes and shapes can be effectively grasped and ungrasped by the prosthetic hand. The unique bending angles in each finger result from the way tendons are connected via flexible cords and fishing lines to the servo motor. This design allows for a dynamic response based on the user's muscle flex and strength. The affordability of this cost-effective prosthetic hand demonstrates its potential as a practical and viable solution for amputees aiming to restore their grasping functionalities

    Cost-Effective Prosthetic Hand for Amputees: Challenges and Practical Implementation

    Get PDF
    According to statistics, approximately 160,000 people in Malaysia, out of the current population of 32 million, need prosthetic or orthotic equipment. For individuals who have experienced upper extremity amputations, significant challenges are posed by the loss of functionality and the desire for a cosmetically appealing solution. To address this issue, a cost-effective prosthetic hand was proposed and developed. An overview of existing prosthetic hands is also offered, with an emphasis on cost-effectiveness, challenges, strengths, and weaknesses. The developed prosthetic hand incorporates a practical and underactuated finger mechanism. It is equipped with controllers based on EMG sensors to ensure that optimal responses are achieved during the grasping and releasing of objects. A suitable motor was carefully chosen to facilitate effective grasping and ungrasping activities. The proposed design was realized using SolidWorks and a 3D Printer. The capabilities of the prosthetic hand were demonstrated through a series of tests involving various objects, including pliers, a screwdriver, and a phone. The results indicate that objects of different sizes and shapes can be effectively grasped and ungrasped by the prosthetic hand. The unique bending angles in each finger result from the way tendons are connected via flexible cords and fishing lines to the servo motor. This design allows for a dynamic response based on the user's muscle flex and strength. The affordability of this cost-effective prosthetic hand demonstrates its potential as a practical and viable solution for amputees aiming to restore their grasping functionalities

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    The PRISMA Hand II: A Sensorized Robust Hand for Adaptive Grasp and In-Hand Manipulation

    Get PDF
    Although substantial progresses have been made in building anthropomorphic robotic hands, lack of mechanical robustness, dexterity and force sensation still restrains wide adoption of robotic prostheses. This paper presents the design and preliminary evaluation of the PRISMA hand II, which is a mechanically robust anthropomorphic hand developed at the PRISMA Lab of University of Naples Federico II. The hand is highly underactuated, as the 19 finger joints are driven by three motors via elastic tendons. Nevertheless, the hand can performs not only adaptive grasps but also in-hand manipulation. The hand uses rolling contact joints, which is compliant in multiple directions. Force sensor are integrated to each fingertip in order to provide force feedback during grasping and manipulation. Preliminary experiments have been performed to evaluate the hand. Results show that the hand can perform various grasps and in-hand manipulation, while the structure can withstand severe disarticulation. This suggests that the proposed design can be a viable solution for robust and dexterous prosthetic hands

    The SmartHand transradial prosthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. <it>SmartHand </it>tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand.</p> <p>Methods</p> <p>SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces.</p> <p>Results</p> <p>SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects.</p> <p>Conclusions</p> <p>Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies.</p

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot
    • …
    corecore