71,470 research outputs found

    Towards the realisation of an integratated decision support environment for organisational decision making

    Get PDF
    Traditional decision support systems are based on the paradigm of a single decision maker working at a stand‐alone computer or terminal who has a specific decision to make with a specific goal in mind. Organizational decision support systems aim to support decision makers at all levels of an organization (from executive, middle management managers to operators), who have a variety of decisions to make, with different priorities, often in a distributed and dynamic environment. Such systems need to be designed and developed with extra functionality to meet the challenges such as collaborative working. This paper proposes an Integrated Decision Support Environment (IDSE) for organizational decision making. The IDSE distinguishes itself from traditional decision support systems in that it can flexibly configure and re‐configure its functions to support various decision applications. IDSE is an open software platform which allows its users to define their own decision processes and choose their own exiting decision tools to be integrated into the platform. The IDSE is designed and developed based on distributed client/server networking, with a multi‐tier integration framework for consistent information exchange and sharing, seamless process co‐ordination and synchronisation, and quick access to packaged and legacy systems. The prototype of the IDSE demonstrates good performance in agile response to fast changing decision situations

    Knowledge-based reasoning in the Paladin tactical decision generation system

    Get PDF
    A real-time tactical decision generation system for air combat engagements, Paladin, has been developed. A pilot's job in air combat includes tasks that are largely symbolic. These symbolic tasks are generally performed through the application of experience and training (i.e. knowledge) gathered over years of flying a fighter aircraft. Two such tasks, situation assessment and throttle control, are identified and broken out in Paladin to be handled by specialized knowledge based systems. Knowledge pertaining to these tasks is encoded into rule-bases to provide the foundation for decisions. Paladin uses a custom built inference engine and a partitioned rule-base structure to give these symbolic results in real-time. This paper provides an overview of knowledge-based reasoning systems as a subset of rule-based systems. The knowledge used by Paladin in generating results as well as the system design for real-time execution is discussed

    Real-Time Data Processing With Lambda Architecture

    Get PDF
    Data has evolved immensely in recent years, in type, volume and velocity. There are several frameworks to handle the big data applications. The project focuses on the Lambda Architecture proposed by Marz and its application to obtain real-time data processing. The architecture is a solution that unites the benefits of the batch and stream processing techniques. Data can be historically processed with high precision and involved algorithms without loss of short-term information, alerts and insights. Lambda Architecture has an ability to serve a wide range of use cases and workloads that withstands hardware and human mistakes. The layered architecture enhances loose coupling and flexibility in the system. This a huge benefit that allows understanding the trade-offs and application of various tools and technologies across the layers. There has been an advancement in the approach of building the LA due to improvements in the underlying tools. The project demonstrates a simplified architecture for the LA that is maintainable

    Flexible data input layer architecture (FDILA) for quick-response decision making tools in volatile manufacturing systems

    Get PDF
    This paper proposes the foundation for a flexible data input management system as a vital part of a generic solution for quick-response decision making. Lack of a comprehensive data input layer between data acquisition and processing systems has been realized and thought of. The proposed FDILA is applicable to a wide variety of volatile manufacturing environments. It provides a generic platform that enables systems designers to define any number of data entry points and types regardless of their make and specifications in a standard fashion. This is achieved by providing a variable definition layer immediately on top of the data acquisition layer and before data pre-processing layer. For proof of concept, National Instruments’ Labview data acquisition software is used to simulate a typical shop floor data acquisition system. The extracted data can then be fed into a data mining module that builds cost modeling functions involving the plant’s Key Performance Factors

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria
    corecore