152 research outputs found

    In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

    Get PDF
    The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range. When J3955 was tested in cell-cycle perturbation experiments, it caused mitotic failure by G2/M-phase cell-cycle arrest. Finally, Western blotting analysis showed an increment of phosphorylated Cdk1 levels in cells exposed to J3955, indicating its specific influence in cellular pathways involving Cdc25 proteins

    Recent Developments in Structure-Based Virtual Screening Approaches

    Full text link
    Drug development is a wide scientific field that faces many challenges these days. Among them are extremely high development costs, long development times, as well as a low number of new drugs that are approved each year. To solve these problems, new and innovate technologies are needed that make the drug discovery process of small-molecules more time and cost-efficient, and which allow to target previously undruggable target classes such as protein-protein interactions. Structure-based virtual screenings have become a leading contender in this context. In this review, we give an introduction to the foundations of structure-based virtual screenings, and survey their progress in the past few years. We outline key principles, recent success stories, new methods, available software, and promising future research directions. Virtual screenings have an enormous potential for the development of new small-molecule drugs, and are already starting to transform early-stage drug discovery.Comment: 22 pages, 2 figure

    Developing science gateways for drug discovery in a grid environment

    Get PDF

    Correlation between cell line chemosensitivity and protein expression pattern as new approach for the design of targeted anticancer small molecules

    Get PDF
    BACKGROUND AND RATIONALE: Over the past few decades, several databases with a significant amount of biological data related to cancer cells and anticancer agents (e.g.: National Cancer Institute database, NCI; Cancer Cell Line Encyclopedia, CCLE; Genomic and Drug Sensitivity in Cancer portal, GDSC) have been developed. The huge amount of heterogeneous biological data extractable from these databanks (among all, drug response and protein expression) provides a real foundation for predictive cancer chemogenomics, which aims to investigate the relationships between genomic traits and the response of cancer cells to drug treatment with the aim to identify novel therapeutic molecules and targets. In very recent times many computational and statistical approaches have been proposed to integrate and correlate these heterogeneous biological data sequences (protein expression – drug response), with the aim to assign the putative mechanism of action of anticancer small molecules with unknown biological target/s. The main limitation of all these computational methods is the need for experimental drug response data (after screening data). From this point of view, the possibility to predict in silico the antiproliferative activity of new/untested small molecules against specific cell lines, could enable correlations to be found between the predicted drug response and protein expression of the desired target from the very earliest stages of research. Such an innovative approach could allow to select the compounds with molecular mechanisms that are more likely to be connected with the target of interest preliminary to the in vitro assays, which would be a critical aid in the design of new targeted anticancer agents. RESULTS: In the present study, we aimed to develop a new innovative computational protocol based on the correlation of drug activity and protein expression data to support the discovery of new targeted anticancer agents. Compared with the approaches reported in the literature, the main novelty of the proposed protocol was represented by the use of predicted antiproliferative activity data, instead of experimental ones. To this aim, in the first phase of the research the new in silico Antiproliferative Activity Predictor (AAP) tool able to predict the anticancer activity (expressed as GI50) of new/untested small molecules against the NCI-60 panel was developed. The ligand-based tool, which took the advantages of the consolidated expertise of the research group in the manipulation of molecular descriptors, was adequately validated and the reliability of the prediction was further confirmed by the analysis of an in-house database and subsequent evaluation of a set of molecules selected by the NCI for the one-dose/five-doses antiproliferative assays. In the second part of the study, a new computational method to correlate drug activity data and protein expression pattern data was proposed and evaluated by analysing several case studies of targeted drugs tested by NCI, confirming the reliability of the proposed method for the biological data analysis. In the last part of the project the proposed correlation approach was applied to design new small molecules as selective inhibitors of Cdc25 phosphatase, a well-known protein involved in carcinogenic processes. By means of this innovative approach, integrated with other classical ligand/structures-based techniques, it was possible to screen a large database of molecular structures, and to select the ones with optimal relationship with the focused target. In vitro antiproliferative and enzymatic inhibition assays of the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins and confirmed the results of the in silico analysis. CONCLUSIONS: Collectively, the obtained results showed that the correlation between protein expression pattern and chemosensitivity is an innovative, alternative, and effective method to identify new modulators for the selected targets. In contrast to traditional in silico methods, the proposed protocol allows for the selection of molecular structures with heterogeneous scaffolds, which are not strictly related to the binding sites and with chemical-physical features that may be more suitable for all the pathways involved in the overall mechanism. The biological assays further corroborate the robustness and the reliability of this new approach and encourage its application in the anticancer targeted drug discovery field

    Acceleration and Verification of Virtual High-throughput Multiconformer Docking

    Get PDF
    The work in this dissertation explores the use of massive computational power available through modern supercomputers as a virtual laboratory to aid drug discovery. As of November 2013, Tianhe-2, the fastest supercomputer in the world, has a theoretical performance peak of 54,902 TFlop/s or nearly 55 thousand trillion calculations per second. The Titan supercomputer located at Oak Ridge National Laboratory has 560,640 computing cores that can work in parallel to solve scientific problems. In order to harness this computational power to assist in drug discovery, tools are developed to aid in the preparation and analysis of high-throughput virtual docking screens, a tool to predict how and how well small molecules bind to disease associated proteins and potentially serve as a novel drug candidate. Methods and software for performing large screens are developed that run on high-performance computer systems. The future potential and benefits of using these tools to study polypharmacology and revolutionizing the pharmaceutical industry are also discussed

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Development of novel anticancer agents targeting G protein coupled receptor: GPR120

    Get PDF
    The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in modulating metabolic and anti-inflammatory processes. GPR120 - also known as Free Fatty Acid Receptor 4 (FFAR4) is classified as a free fatty acid receptor of the Class A GPCR family. GPR120 has recently been implicated as a novel target for cancer management. GPR120 gene knockdown in breast cancer studies revealed a role of GPR120-induced chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher expression and activation levels of GPR120 is also reported to promote tumour angiogenesis and cell migration in colorectal cancer. A number of agonists targeting GPR120 have been reported, such as TUG891 and Compound39, but to date development of small-molecule inhibitors of GPR120 is limited. This research applied a rational drug discovery approach to discover and design novel anticancer agents targeting the GPR120 receptor. A homology model of GPR120 (short isoform) was generated to identify potential anticancer compounds using a combined in silico docking-based virtual screening (DBVS), molecular dynamics (MD) assisted pharmacophore screenings, structure–activity relationships (SAR) and in vitro screening approach. A pharmacophore hypothesis was derived from analysis of 300 ns all-atomic MD simulations on apo, TUG891-bound and Compound39-bound GPR120 (short isoform) receptor models and was used to screen for ligands interacting with Trp277 and Asn313 of GPR120. Comparative analysis of 100 ns all-atomic MD simulations of 9 selected compounds predicted the effects of ligand binding on the stability of the “ionic lock” – a characteristic of Class A GPCRs activation and inactivation. The “ionic lock” between TM3(Arg136) and TM6(Asp) is known to prevent G-protein recruitment while GPCR agonist binding is coupled to outward movement of TM6 breaking the “ionic lock” which facilitates G-protein recruitment. The MD-assisted pharmacophore hypothesis predicted Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) to act as a GPR120S antagonist which can be evaluated and characterised in future studies. Additionally, DBVS of a small molecule database (~350,000 synthetic chemical compounds) against the developed GPR120 (short isoform) model led to selection of the 13 hit molecules which were then tested in vitro to evaluate their cytotoxic, colony forming and cell migration activities against SW480 – human CRC cell line expressing GPR120. Two of the DBVS hit molecules showed significant (\u3e 90%) inhibitory effects on cell growth with micromolar affinities (at 100 μM) - AK-968/12713190 (dihydrospiro(benzo[h]quinazoline-5,1′-cyclopentane)-4(3H)-one) and AG-690/40104520 (fluoren-9-one). SAR analysis of these two test compounds led to the identification of more active compounds in cell-based cytotoxicity assays – AL-281/36997031 (IC50 = 5.89–6.715 μM), AL-281/36997034 (IC50 = 6.789 to 7.502 μM) and AP-845/40876799 (IC50 = 14.16-18.02 μM). In addition, AL-281/36997031 and AP-845/40876799 were found to be significantly target-specific during comparative cytotoxicity profiling in GPR120-silenced and GPR120-expressing SW480 cells. In wound healing assays, AL-281/36997031 was found to be the most active at 3 μM (IC25) and prevented cell migration. As well as in the assessment of the proliferation ability of a single cell to survive and form colonies through clonogenic assays, AL-281/36997031 was found to be the most potent of all three test compounds with the survival rate of ~ 30% at 3 μM. The inter-disciplinary approach applied in this work identified potential chemical scaffolds –spiral benzo-quinazoline and fluorenone, targeting GPR120 which can be further explored for designing anti-cancer drug development studies
    • …
    corecore