2,600 research outputs found

    Wide-bandwidth high-resolution search for extraterrestrial intelligence

    Get PDF
    Research accomplished in the following areas is discussed: the antenna configuration; HEMT low-noise amplifiers; the downconverter; the Fast Fourier Transform Array; the backend array; and the backend and workstation

    Advanced instrumentation for aircraft icing research

    Get PDF
    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe

    Compact personal distributed wearable exposimeter

    Get PDF
    A compact wearable personal distributed exposimeter (PDE) is proposed, sensing the power density of incident radio frequency (RF) fields on the body of a human. In contrast to current commercial exposimeters, our PDE, being composed of multiple compact personal wearable RF exposimeter sensor modules, minimizes uncertainties caused by the proximity of the body, the specific antenna used, and the exact position of the exposimeter. For unobtrusive deployment inside a jacket, each individual exposimeter sensor module is specifically implemented on the feedplane of a textile patch antenna. The new wearable sensor module's high-resolution logarithmic detector logs RF signal levels. Next, on-board flash memory records minimum, maximum, and average exposure data over a time span of more than two weeks, at a one-second sample period. Sample-level synchronization of each individual exposimeter sensor module enables combining of measurements collected by different nodes. The system is first calibrated in an anechoic chamber, and then compared with a commercially available single-unit exposimeter. Next, the PDE is validated in realistic conditions, by measuring the average RF power density on a human during a walk in an urban environment and comparing the results to spectrum analyzer measurements with a calibrated antenna

    A personal, distributed exposimeter: procedure for design, calibration, validation, and application

    Get PDF
    This paper describes, for the first time, the procedure for the full design, calibration, uncertainty analysis, and practical application of a personal, distributed exposimeter (PDE) for the detection of personal exposure in the Global System for Mobile Communications (GSM) downlink (DL) band around 900 MHz (GSM 900 DL). The PDE is a sensor that consists of several body-worn antennas. The on-body location of these antennas is investigated using numerical simulations and calibration measurements in an anechoic chamber. The calibration measurements and the simulations result in a design (or on-body setup) of the PDE. This is used for validation measurements and indoor radio frequency (RF) exposure measurements in Ghent, Belgium. The main achievements of this paper are: first, the demonstration, using both measurements and simulations, that a PDE consisting of multiple on-body textile antennas will have a lower measurement uncertainty for personal RF exposure than existing on-body sensors; second, a validation of the PDE, which proves that the device correctly estimates the incident power densities; and third, a demonstration of the usability of the PDE for real exposure assessment measurements. To this aim, the validated PDE is used for indoor measurements in a residential building in Ghent, Belgium, which yield an average incident power density of 0.018 mW/m(2)

    Time-varying Huygens' meta-devices for parametric waves

    Full text link
    Huygens' metasurfaces have demonstrated almost arbitrary control over the shape of a scattered beam, however, its spatial profile is typically fixed at fabrication time. Dynamic reconfiguration of this beam profile with tunable elements remains challenging, due to the need to maintain the Huygens' condition across the tuning range. In this work, we experimentally demonstrate that a time-varying metadevice which performs frequency conversion can steer transmitted or reflected beams in an almost arbitrary manner, with fully dynamic control. Our time-varying Huygens' metadevice is made of both electric and magnetic meta-atoms with independently controlled modulation, and the phase of this modulation is imprinted on the scattered parametric waves, controlling their shapes and directions. We develop a theory which shows how the scattering directionality, phase and conversion efficiency of sidebands can be manipulated almost arbitrarily. We demonstrate novel effects including all-angle beam steering and frequency-multiplexed functionalities at microwave frequencies around 4 GHz, using varactor diodes as tunable elements. We believe that the concept can be extended to other frequency bands, enabling metasurfaces with arbitrary phase pattern that can be dynamically tuned over the complete 2\pi range

    Quantum Cryptography

    Full text link
    Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures compressed tar fil
    corecore