2,932 research outputs found

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Distributed Sensor Data Search Platform for Internet of Things Environments

    Get PDF
    Recently, the number of devices has grown increasingly and it is hoped that, between 2015 and 2016, 20 billion devices will be connected to the Internet and this market will move around 91.5 billion dollars. The Internet of Things (IoT) is composed of small sensors and actuators embedded in objects with Internet access and will play a key role in solving many challenges faced in today's society. However, the real capacity of IoT concepts is constrained as the current sensor networks usually do not exchange information with other sources. In this paper, we propose the Visual Search for Internet of Things (ViSIoT) platform to help technical and non-technical users to discover and use sensors as a service for different application purposes. As a proof of concept, a real case study is used to generate weather condition reports to support rheumatism patients. This case study was executed in a working prototype and a performance evaluation is presented.Comment: International Journal of Services Computing (ISSN 2330-4472) Vol. 4, No.1, January - March, 201

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela Politécnica Superior (Higher Polytechnic School) and the Escuela de Ingeniería Informática (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigación está liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela Politécnica Superior y en Escuela de Ingeniería Informática. Las principales líneas de investigaciones son: a) Robótica industrial y móvil. b) Procesamiento neuro-inspirado basado en pulsos electrónicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) Tecnología de la información aplicada a la discapacidad, rehabilitación y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artículo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los últimos años

    Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing

    Get PDF
    In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.Ministerio de Economía TEC2016-80242-PJunta de Andalucía P11-TEP-812

    A plug and play transparent communication layer for cloud robotics architectures

    Get PDF
    The cloud robotics paradigm aims at enhancing the abilities of robots by using cloud services, but it still poses several challenges in the research community. Most of the current literature focuses on how to enrich specific robotic capabilities, overlooking how to effectively establish communication between the two fields. Our work proposes a “plug-and-play” solution to bridge the communication gap between cloud and robotic applications. The proposed solution is designed based on the mature WebSocket technology and it can be extended to any ROS-based robotic platform. The main contributions of this work are the definition of a reliable autoconnection/autoconfiguration mechanism as well as to outline a scalable communication layer that allows the effective control of multiple robots from multiple users. The “plug-and-play” solution was evaluated in both simulated and real scenarios. In the first case, the presence of users and robots was simulated with Robot Operating System (ROS) nodes running on five machines. In the real scenario, three non-expert users teleoperated, simultaneously, three remote robots by using the proposed communication layer with different networking protocols. Results confirmed the reliability at different levels: at startup (success_rate = 100%); during high-rate communications (message_lost = 0%); in performing open-loop spiral trajectories with enhancement, with respect to similar works; and in the quality of simultaneous teleoperations

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Robotics Applications Based on Merged Physical and Virtual Reality

    Get PDF
    corecore