11,158 research outputs found

    Wireless Power Transfer System for Battery-Less Sensor Nodes

    Get PDF
    For the first time, the design and implementation of a fully-integrated wireless information and power transfer system, operating at 24 GHz and enabling battery-less sensor nodes, is presented in this paper. The system consists of an RF power source, a receiver antenna array, a rectifier, and a battery-less sensor node which communicates via backscatter modulation at 868 MHz. The rectifier circuits use commercially available Schottky diodes to convert the RF power to DC with a measured efficiency of up to 35%, an improvement of ten percentage points compared with previously reported results. The rectifiers and the receive antenna arrays were jointly designed and optimised, thereby reducing the overall circuit size. The battery-less sensor transmitted data to a base station realised as a GNU Radio flow running on a bladeRF Software Defined Radio module. The whole system was tested in free-space in laboratory conditions and was capable of providing sufficient energy to the sensor node in order to enable operation and wireless communication at a distance of 0.15 metres

    Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications

    Get PDF
    The Internet of Things (IoT) provides a virtual view, via the Internet Protocol, to a huge variety of real life objects, ranging from a car, to a teacup, to a building, to trees in a forest. Its appeal is the ubiquitous generalized access to the status and location of any "thing" we may be interested in. Wireless sensor networks (WSN) are well suited for long-term environmental data acquisition for IoT representation. This paper presents the functional design and implementation of a complete WSN platform that can be used for a range of long-term environmental monitoring IoT applications. The application requirements for low cost, high number of sensors, fast deployment, long lifetime, low maintenance, and high quality of service are considered in the specification and design of the platform and of all its components. Low-effort platform reuse is also considered starting from the specifications and at all design levels for a wide array of related monitoring application

    Embedded Sensor System for Early Pathology Detection in Building Construction

    Get PDF
    Structure pathology detection is an important security task in building construction, which is performed by an operator by looking manually for damages on the materials. This activity could be dangerous if the structure is hidden or difficult to reach. On the other hand, embedded devices and wireless sensor networks (WSN) are becoming popular and cheap, enabling the design of an alternative pathology detection system to monitor structures based on these technologies. This article introduces a ZigBee WSN system, intending to be autonomous, easy to use and with low power consumption. Its functional parts are fully discussed with diagrams, as well as the protocol used to collect samples from sensor nodes. Finally, several tests focused on range and power consumption of our prototype are shown, analysing whether the results obtained were as expected or not

    Micro air vehicles energy transportation for a wireless power transfer system

    Get PDF
    The aim of this work is to demonstrate the feasibility use of an Micro air vehicles (MAV) in order to power wirelessly an electric system, for example, a sensor network, using low-cost and open-source elements. To achieve this objective, an inductive system has been modelled and validated to power wirelessly a sensor node using a Crazyflie 2.0 as MAV. The design of the inductive system must be small and light enough to fulfil the requirements of the Crazyflie. An inductive model based on two resonant coils is presented. Several coils are defined to be tested using the most suitable resonant configuration. Measurements are performed to validate the model and to select the most suitable coil. While attempting to minimize the weight at transmitter’s side, on the receiver side it is intended to efficiently acquire and manage the power obtained from the transmitter. In order to prove its feasibility, a temperature sensor node is used as demonstrator. The experiment results show successfully energy transportation by MAV, and wireless power transfer for the resonant configuration, being able to completely charge the node battery and to power the temperature sensor.Peer ReviewedPostprint (published version
    • …
    corecore