214 research outputs found

    GAUSSIAN SEAM-MODE CIRCUITS FOR, MILLIMETRE WAVELENGTHS

    Get PDF
    PhDAlthough the Maxwell equations govern the propagation of EM waves at all frequencies, the methods required to generate, direct, analyse and detect radiation differ from band to band. This thesis is concerned with the development and demonstration of 'Quasi-optical' techniques for millimetre wavelengths, which involve the propagation of Gaussian profiled beams a few wavelengths across, and the realization of a general circuit approach to mm-wave measurement. Gaussian beam-mode analysis, which is used in later chapters to understand propagation of quasi-optical beams, is reviewed in chapter 1. Chapter 2 outlines the design, manufacture and testing of corrugated feed horns which generate fundamental Gaussian beam-modes. The design and manufacture of lenses which control the spreading of the beams and directional couplers which provide desirable signal processing functions in quasi-optical circuits is discussed in chapter 3. Chapter 4 traces the development of a Faraday isolator which operates in free-space and can suppress unwanted reflections in quasi-optical circuits. Chapter 5 discusses a reusable circuit board upon which systems can be easily and quickly constructed. A null reflectometer built using quasi-optical components is outlined in chapter 6 and reflection measurements from lenses and horns presented. Chapter 7 describes a corrugated feed horn/lens antenna used in a balloon-borne nw-wave cosmic background experiment. Finally, Chapter 8 demonstrates the use of quasi-optical components in a 115 GHz receiver circuit

    The QUIET Instrument

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales (~ 1 degree). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range l= 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument

    A w-band quasi-optical mode converter and gyro-BWO experiment

    Get PDF
    High power coherent microwave sources at shorter wavelengths (mm and sub-mm) are in great demand, especially in the fields of plasma physics, remote sensing and imaging and for electron spin resonance spectroscopy. Gyro-devices are by their nature particularly suited to this type of application due to the fast-wave cyclotron resonance maser instability, which is capable of producing high power radiation at frequencies that prove challenging for other sources. A W-band gyro-device based on a cusp electron beam source with a helically corrugated interaction region is currently under development to provide a continuously tuneable source over the range between 90 GHz to 100 GHz with a CW power output of ~10 kW. The work presented herein encompasses the design, construction and measurement of a prototype output launcher for this gyro-device. A corrugated mode converting horn was designed to act as a quasi-optical mode converter that converts the fundamental operating mode within the gyro-TWA (TE11) to a hybrid mode, which is closely coupled to the fundamental free space Gaussian mode (TEM00). This free space mode allows the possibility for the inclusion of an energy recovery system that can recover a percentage of the energy from the spent electron beam and is predicted to increase overall efficiency by up to 40%. For this scheme the electron beam must be decoupled from the radiation, which can pass through the collector system and vacuum window unperturbed while the electrons are collected at the energy recovery system. This type of corrugated mode converting horn was chosen due to the advantages of a greater bandwidth and the capability to provide a source that is continuously tuneable over this bandwidth. The results of the design and integration of this corrugated mode converting horn with the gyro-device are presented. The prototype operates over a continuously tuneable bandwidth of 90 to 100 GHz with a return loss better than -35 dB and a Gaussian coupling efficiency of 97.8%. The far field radiation pattern shows a highly symmetrical structure with 99.9% of the power radiated within a cone with a half angle of less than 19° and a cross-polar level less than -40 dB.High power coherent microwave sources at shorter wavelengths (mm and sub-mm) are in great demand, especially in the fields of plasma physics, remote sensing and imaging and for electron spin resonance spectroscopy. Gyro-devices are by their nature particularly suited to this type of application due to the fast-wave cyclotron resonance maser instability, which is capable of producing high power radiation at frequencies that prove challenging for other sources. A W-band gyro-device based on a cusp electron beam source with a helically corrugated interaction region is currently under development to provide a continuously tuneable source over the range between 90 GHz to 100 GHz with a CW power output of ~10 kW. The work presented herein encompasses the design, construction and measurement of a prototype output launcher for this gyro-device. A corrugated mode converting horn was designed to act as a quasi-optical mode converter that converts the fundamental operating mode within the gyro-TWA (TE11) to a hybrid mode, which is closely coupled to the fundamental free space Gaussian mode (TEM00). This free space mode allows the possibility for the inclusion of an energy recovery system that can recover a percentage of the energy from the spent electron beam and is predicted to increase overall efficiency by up to 40%. For this scheme the electron beam must be decoupled from the radiation, which can pass through the collector system and vacuum window unperturbed while the electrons are collected at the energy recovery system. This type of corrugated mode converting horn was chosen due to the advantages of a greater bandwidth and the capability to provide a source that is continuously tuneable over this bandwidth. The results of the design and integration of this corrugated mode converting horn with the gyro-device are presented. The prototype operates over a continuously tuneable bandwidth of 90 to 100 GHz with a return loss better than -35 dB and a Gaussian coupling efficiency of 97.8%. The far field radiation pattern shows a highly symmetrical structure with 99.9% of the power radiated within a cone with a half angle of less than 19° and a cross-polar level less than -40 dB

    Optimized Design of Axially Symmetric Cassegrain Reflector antenna using Iterative Local Search Algorithm

    Get PDF
    Dual reflector antennas are considered as pencil beam antennas that can produce radiation identical to searchlight beams. As compared with front-fed configuration, design of dual-reflector geometry is complicated since the parameters like feed location, sub reflectorsize, required taper on sub reflector, selection of focal length to diameter ratio of the main reflector, amplitude distribution provided by feed etc. are to be adjusted as per the given specifications. Also the side lobe suppression effort requires the antenna to be designed for minimum sub reflector blockage. The design of such a cassegrain reflector is considered for the minimum blockage condition. Along with the parameters like high gain and low cross-polarization; low VSWR is also one of the prenominal parameter that can be achieved. The optimized values of f/Dand angle subtended by the sub reflector is obtained by using Iterative Local Search algorithm. For obtaining the radiation diagrams, ‘Induced Current Analysis of Reflector Antenna’ and GRASP soft wares are used. This will help us to identify the factors that affect the radiation pattern of the antenna

    The design of an ultra-low sidelobe offset-fed 1.22m antenna for use in the broadcasting satellite service

    Get PDF
    A feed design and reflector geometry were determined for an ultra low sidelobe offset fed 1.22 meter antenna suitable for use in the 12 GHz broadcasting satellite service. Arbitrary constraints used to evaluate the relative merits of the feed horns and range of f/D geometries are: minimum efficiency of 55 percent, -30 dB first sidelobe level (relative to on axis gain), a 0 dBi plateau beyond the near in sidelobe region, and a Chebyshev polynomial based envelope (borrowed from filter theory) for the region from the -3 dB beamwidth points to the 0 dBi plateau region. This envelope is extremely stringent but the results of this research effort indicate that two steps of corrugated feed and a cluster array of small 1 lambda horns do meet the constraints. A set of performance specifications and a mechanical design suitable for a consumer oriented market in the broadcasting satellite service was developed. Costs for production quantities of 10,000 units/yr. are estimated to be around $150

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference

    Get PDF
    The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year

    Satellite communication antenna technology : summer school, 1982, Technische Hogeschool Eindhoven: lectures

    Get PDF

    Satellite communication antenna technology : summer school, 1982, Technische Hogeschool Eindhoven: lectures

    Get PDF

    CMB Polarimetry using Correlation Receivers with the PIQUE and CAPMAP Experiments

    Full text link
    The Princeton IQU Experiment (PIQUE) and the Cosmic Anisotropy Polarization MAPper (CAPMAP) are experiments designed to measure the polarization of the Cosmic Microwave Background (CMB) on sub-degree scales in an area within 1 degree of the North Celestial Pole using heterodyne correlation polarimeters and off-axis telescopes located in central New Jersey. PIQUE produced the tightest limit on the CMB polarization prior to its detection by DASI, while CAPMAP has recently detected polarization at l~1000. The experimental methods and instrumentation for these two projects are described in detail with emphasis on the particular challenges involved in measuring the tiny polarized component of the CMB.Comment: 70 pages, 13 tables, 18 figures. Accepted by ApJS; tentative publication ApJS July 2005, v159
    corecore