733 research outputs found

    Design of a Trichromatic Cone Array

    Get PDF
    Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative

    What horses and humans see: a comparative review

    Get PDF
    Adaptations of the mammalian eye have tailored each to its own particular ecological niche. On the one hand, it would appear that the horse is best served by a system that can keep "half an eye" on everything, while the human benefits from focussing on more specific aspects of the visual array. By adapting a range of techniques, originally used to assess human visual ability, it has been possible to compare the human visual experience with that of the horse. In general, the results of the majority of these comparative studies indicate that the visual capabilities of the horse are broadly inferior to the human equivalents in acuity, accommodation, and colour vision. However, both the horse and human abilities to judge distance and depth perception may be quite comparable while equine vision is certainly superior to that of human's under scotopic conditions. Individual variation in visual ability, which is routinely taken for granted in humans, is also likely to occur in the horse. Such variation would undoubtedly affect equine performance, particularly in terms of expectation of athletic competitive outcomes in modern equitation

    The Cone Dysfunction Syndromes

    Get PDF
    The cone dysfunction syndromes are a heterogeneous group of inherited, predominantly stationary retinal disorders characterised by reduced central vision, and varying degrees of colour vision abnormalities, nystagmus and photophobia. This review details the following conditions: complete and incomplete achromatopsia, blue-cone monochromatism, oligocone trichromacy, bradyopsia, and Bornholm eye disease. We describe the clinical, psychophysical, electrophysiological and imaging findings that are characteristic to each condition, in order to aid their accurate diagnosis, as well as highlight some classically held notions about these diseases that have come to be challenged over recent years. The latest data regarding the genetic aetiology and pathological changes observed in the cone dysfunction syndromes are discussed, and, where relevant, translational avenues of research, including completed and anticipated interventional clinical trials, for some of the diseases described herein will be presented. Finally, we briefly review the current management of these disorders

    The genetics of normal and defective color vision

    Get PDF
    AbstractThe contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry

    Effects of color-enhancing glasses on color vision in congenital red-green color deficiencies

    Get PDF
    As commercially available glasses for color vision deficiency (CVD) are classified as low risk, they are not subject to stringent marketing regulations. We investigate how EnChroma and VINO glasses affect performance on the Colour Assessment and Diagnosis (CAD) test in individuals with CVD. Data were obtained from 51 individuals with red-green CVD. Blood or saliva samples were collected to examine the structure of the OPN1LW/OPN1MW array. Individuals completed the CAD test twice without glasses and once with each pair of glasses. Although there was a statistically significant effect of both glasses, only that of VINO could be considered functionally meaningful

    The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.)

    Get PDF
    The evolution of trichromatic colour vision by the majority of anthropoid primates has been linked to the efficient detection and selection of food, particularly ripe fruits among leaves in dappled light. Modelling of visual signals has shown that trichromats should be more efficient than dichromats at distinguishing both fruits from leaves and ripe from unripe fruits. This prediction is tested in a controlled captive setting using stimuli recreated from those actually encountered by wild tamarins (Saguinus spp.). Dietary data and reflectance spectra of Abuta fluminum fruits eaten by wild saddleback (Saguinus fuscicollis) and moustached (Saguinus mystax) tamarins and their associated leaves were collected in Peru. A. fluminum leaves, and fruits in three stages of ripeness, were reproduced and presented to captive saddleback and red-bellied tamarins (Saguinus labiatus). Trichromats were quicker to learn the task and were more efficient at selecting ripe fruits than were dichromats. This is the first time that a trichromatic foraging advantage has been demonstrated for monkeys using naturalistic stimuli with the same chromatic properties as those encountered by wild animal

    The importance of spatial visual scene parameters in predicting optimal cone sensitivities in routinely trichromatic frugivorous old-world primates

    Get PDF
    Computational models that predict the spectral sensitivities of primate cone photoreceptors have focussed only on the spectral, not spatial, dimensions. On the ecologically valid task of foraging for fruit, such models predict the M-cone (“green”) peak spectral sensitivity 10–20 nm further from the L-cone (“red”) sensitivity peak than it is in nature and assume their separation is limited by other visual constraints, such as the requirement of high-acuity spatial vision for closer M and L peak sensitivities. We explore the possibility that a spatio-chromatic analysis can better predict cone spectral tuning without appealing to other visual constraints. We build a computational model of the primate retina and simulate chromatic gratings of varying spatial frequencies using measured spectra. We then implement the case study of foveal processing in routinely trichromatic primates for the task of discriminating fruit and leaf spectra. We perform an exhaustive search for the configurations of M and L cone spectral sensitivities that optimally distinguish the colour patterns within these spectral images. Under such conditions, the model suggests that: (1) a long-wavelength limit is required to constrain the L cone spectral sensitivity to its natural position; (2) the optimal M cone peak spectral sensitivity occurs at ~525 nm, close to the observed position in nature (~535 nm); (3) spatial frequency has a small effect upon the spectral tuning of the cones; (4) a selective pressure toward less correlated M and L spectral sensitivities is provided by the need to reduce noise caused by the luminance variation that occurs in natural scenes

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided
    corecore