115 research outputs found

    ESTCube-1 nanosatelliidi alams usteemide ja tarkvara disain ja karakteriseerimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneElektrilise päikesepurje tehnoloogia võimaldaks kosmosesondidel navigeerida planeetidevahelises ruumis ilma kütuseta, kasutades vaid päikesetuult ja elektrienergiat. Küll aga on tehnoloogiliselt keerukas päikesepurje purjetraadi väljakerimine, mis eeldab kosmosesondi pöörlemapanekut. 2013. aasta 7. mail maalähedasele orbiidile läkitatud tudengisatelliit ESTCube-1 oli esimene satelliit elektrilise päikesepurje katsetusmooduliga. Satelliit seati edukalt vajaliku pöörlemiskiirusega pöörlema, kuid purje väljakerimine ebaõnnestus mehaanilise tõrke tõttu katsetusmooduli motoriseeritud purjepoolis. ESTCube-1 pöörlemapanekut ja päikesepurje katsetusmooduli juhtimist võimaldasid satelliidi pardaarvuti ja seda ümbritsevad liidesed, mille arendamise ja valideerimise tulemustele keskendub antud väitekiri. Pardaarvuti kogus mõõdiseid satelliidi asendi anduritelt, juhtis magnetmähiseid ning lülitas missioonilasti purjepooli mootorit, purjepooli kõrgepinge toiteplokki ja elektronkiirgureid. Lisaks vahendas pardaarvuti pilte pardakaamerast ning salvestas mõõtmistulemusi satelliidi alamsüsteemidelt et need hiljem maajaamale edastada. Satelliidi kaheaastase eluea jooksul ei täheldatud missioonikriitilisi tõrkeid pardaarvuti ega selle liideste töös. ESTCube-1 missioon aitas edukalt tõsta elektrilise päikesepurje tehnoloogia komponentide valmidusastet tulevasteks missioonideks.Electrical solar wind sail (E-sail) technology would enable propellantless interplanetary navigation of space probes, using just solar wind and electricity. One of the main challenges of the technology is E-sail tether deployment, for which the space probe would be spun to a high angular rate. Launched on May 7th, 2013, the Estonian student satellite ESTCube-1 was the first spacecraft with an E-sail experiment payload. While the satellite was successfully spun to the spin rate necessary for the experiment, the motorised reel technology used on the payload proved immature for tether deployment. ESTCube-1 spin-up and payload control were enabled by the spacecraft on-board computer. This thesis is focused on the results of the development and in-orbit validation of the on-board computer and its interfaces to other related systems on the satellite. The on-board computer collected measurements from spacecraft attitude sensors, controlled its magnetic torquers, mediated camera images and stored telemetry from various subsystems for later transmission. The on-board computer also toggled the tether reel motor, electron emitters and controlled the high voltage supply for the E-sail tether. Throughout the two-year lifetime of the spacecraft, no mission-critical issues were encountered in the operation of the on-board computer or its interfaces. The ESTCube-1 mission successfully improved the technological readiness of E-sail components for future missions.https://www.ester.ee/record=b524281

    ESA Nanosatellites for D3S (Distributed Space Weather Sensor System)

    Get PDF
    In early 2021, SSTL was selected to be the prime contractor for an ongoing 18 month ESA-funded Phase 0/A study titled “SSA P3-SWE-LIII Nanosatellites for D3S”. The objective of the study is to assess the feasibility of using nanosatellites for future operational space weather monitoring missions as part of ESA's Distributed Space Weather Sensor System (D3S). The Phase 0 study initially involved an analysis of science measurement requirements and space weather instruments as well as an analysis of recent relevant nanosatellite missions and nanosatellite technologies which could be used on future ESA D3S Nanosatellites. This was followed by an initial trade-off of a range of high-level mission architecture concepts, eventually converging down to two mission architecture concepts proposed for further analysis during the remainder of the Phase 0 study. The aim of the first mission architecture concept is to provide near-real time measurements of radiation, thermal plasma and Ionospheric neutrals/plasma, via a constellation of 20x SSTL-21 satellites. The objective of the second mission architecture concept is to provide near-real time measurements of radiation, the Ionosphere and the Thermosphere, via a constellation of 6x 16U SSTL-Cube satellites. ESA selected the second mission architecture concept to take through into the Phase A study. This paper will mainly describe the details of the Phase 0 study, as well as touching on the current status of the Phase A study

    Lessons Learned of NSPO’s Picosatellite Mission: Yamsat - 1A, 1B & 1C

    Get PDF
    The YamSat is the first developed picosatellite in National Space Program Office’s (NSPO), Taiwan, R.O.C. It is scheduled to flight in the CubeSat launch in 2003. The rapid-prototyping system engineering different from the past formal discipline opens a new satellite development model in NSPO. The YamSat Test Readiness Review Meeting was successfully held in January 2002 and the environmental tests were completed by end March 2002. Besides the breadboard model and engineering test bed to prove of operation concept are built, three YamSats (1A, 1B, & 1C) instead of one are manufactured with slightly different configurations and purposes. The YamSat- 1A is for flight with ambitious and novel R.O.C. made components, including 15 domestic organizations and companies’ participation. The YamSat-1B is basically for backup purpose and demonstration, whereas the YamSat-1C is for amateur communication experiment end-to-end field test, and for public education purpose. This new experience gives fruitful lessons learned and provides low cost space experimentation and education to the next built picosatellites in Taiwan’s universities. Detailed mission and lessons learned are addressed in this paper

    The New Mexico State University Satellite (NMSUSat) Mission

    Get PDF
    The New Mexico State University Satellite (NMSUSat) is part of the University Nanosat 3 program managed by the Air Force Research Laboratory and it is being developed at New Mexico State University. The planned Science Mission for the satellite is to perform Near Ultra Violet emission intensity measurements of the earth\u27s upper atmosphere over the night side of the earth. The Engineering Mission is to demonstrate techniques for distributed data relaying over the Internet and to conduct an energy storage experiment to assess the operational characteristics of double layer capacitors. The Educational Mission of the program to assist in the further development of the aerospace engineering concentration area in the College of Engineering and to develop multi-disciplinary capstone and design classes for students in engineering departments, computer science, and the engineering physics program. This paper will discuss the preliminary design for the satellite components and how the mission segments will be worked among the participating departments at New Mexico State University

    Telecommand and Telemetry Implementation of Aalto-2 CubeSat Project

    Get PDF
    This thesis work concentrates on the development of telecommand and telemetry handler software for a 2 kg Aalto-2 nanosatellite, currently scheduled for launch in October 2016. The satellite is part of the international QB50 termosphere mission and it is developed by Aalto University in Espoo, Finland. The telecommand and telemetry (TC/TM) handler, in charge of communications, is one of the most important systems of satellite software, which is executed by On Board Computer (OBC). In this thesis, the TC/TM handler subsystem is designed, giving it a special attention in maintaining simplicity and reliability. The design process is started with the derivation of requirements and constraints. The software is implemented for FreeRTOS, an open-source real-time operating system, which is selected as operation environment of the satellite OBC software. The designed software uses a Concatenative Language approach and complies with ECSS-PUS standard. It features different libraries that provide capabilities for on-board data handling needs, the most notable of which is the Dyncall library. The library provides functions of dynamic function call in C. The UHF driver handles incoming and outgoing low-level communications protocols, and the Coffee File System implements storage management. The work gives an overview of small satellite communication architectures and relevant standards and interfaces.Esta tésis se centra en el desarrollo de sistemas de telecontrol y software controlador de telemetría para el nanosatélite Aalto-2, cuyo lanzamiento está previsto para octubre de 2016. El satélite forma parte de la misión internacional QB50 termosphere y ha sido desarrollado por la Universidad de Aalto en Espoo, Finlandia. El controlador de telecomando y telemetría (TC/TM), a cargo de las comunicaciones, es uno de los sistemas más importantes del software del satélite. Este software es ejecutado por el Ordenador de abordo (OBC). El proceso de diseño se inicia con la derivación de los requisitos y limitaciones. El software está implementado para FreeRTOS, un sistema operativo en tiempo real de código abierto, que es seleccionado como entorno operativo del software del OBC. El software diseñado utiliza un enfoque de programación concatenativa y cumple con la norma de ECSS-PUS. Cuenta con diferentes librerias que proporcionan capacidades de datos de abordo necesidades de manipulación, el más notable de los cuales es la libreria Dyncall. Esta proporciona funciones de llamada dinámica en C. Los drivers de la UHF maneja los protocolos de comunicación de bajo nivel de entrada y salida, y el sistema de archivo es implementado por el Coffe File System o CFS. El trabajo ofrece una visión general de las arquitecturas de comunicaciones de nanosatélites, las normas pertinentes y las interfaces.Aquesta tési es centra en el desenvolupament de sistemes de telecontrol i programari controlador de telemetria per al nanosatèl·lit Aalto-2, el llançament del qual està previst per octubre del 2016. El satèl·lit forma part de la missió internacional QB50 termosphere i ha estat desenvolupat per la Universitat d'Aalto a Espoo, Finlàndia. El controlador de telecomandament i telemetria (TC / TM), se'n fa càrrec de les comunicacions i és un dels sistemes més importants del programari del satèl·lit. Aquest és executat per l'ordinador d'abord (OBC). El procés de disseny s'inicia amb la derivació dels requisits i limitacions. El programari està implementat per FreeRTOS, un sistema operatiu en temps real de codi obert, que és seleccionat com a entorn operatiu del OBC. El programari dissenyat utilitza un enfocament de programació concatenada i compleix amb la norma de ECSS-PUS. Compta amb diferents llibreries que proporcionen capacitats de dades d'abordo necessitats de manipulació, el més notable dels quals és la llibreria Dyncall. Aquesta proporciona funcions de crida dinàmica en C. Els drivers de la UHF controla els protocols de comunicació a baix nivell d'entrada i sortida, i el sistema d'arxiu és implementat pel Coffe File System o CFS. El treball ofereix una visió general de les arquitectures de comunicacions de nanosatèl·lits, les normes pertinents i les interfícies

    Tsinghua Micro/Nanosatellite Research and Its Application

    Get PDF
    With the development of Micro-lNano-technology, Micro-lNano-satellite are paid great attention and developed rapidly. Tsinghua Space Research Center( TSRC) has planed to develop their Microsatellite and Nanosatellite with the cooperation of Surrey Space Center (SSC). The Tsinghua-l Microsatellite is new generation 3-axis stabile Microsatellite in 50 Kg. It is used as technical demonstration of Microsatellite constellation for globe disaster forecast net. The main Payloads include Multi-Spectral Earth Image System (MEIS) which have a 50 meters ground resolution and the cameras will be mounted 15 degrees off Z-axis of the satellite to meet the 400 kilometre ground swath requirement, Date Transmit Experiment payload which is used to survey the radio frequencies interference and GPS receiver. The THNS-l is a Nanosatellite in 5Kg. One micro magnetometer, three micro 2-d sun sensor, a micro GPS receiver and MIMU is employed to determine the attitude of Nanosatellite. A small gravity-gradient boom is used as basic stabilization of satellite. The main payload is a micro Multi-Spectral Earth Imaging system (MEIS). Three on chip CMOS CCD Cameras providing 250 meter ground sampling in 3 spectral bands with an 75 kIn field of view capable of providing detailed information on Earth resources, land use and environmental haze pollution and etc. The other Micro-Mechanical-Electric-system (MEMS) devices are as experimental payloads also

    Disseny i Implementació d'un Sistema de Comunicacions per a PocketQube basat a LoRa

    Get PDF
    We have recently been able to witness how large companies have set themselves the goal of launching fleets of hundreds or even thousands of satellites to offer different services. This new generation of satellites is marking a clear trend to reduce their size and cost. However, this also leads to increasingly demanding challenges and constraints that require innovative solutions in the design of small-size, high-capacity communications systems. The present work offers the complete process from the design, to the implementation and test of a communications system for PocketQube picosatellites. The proposed solution benefits from LoRa technology, and includes both the hardware part of the communications subsystem and software for its configuration and operation according to the defined protocol. Finally, this project has been designed and integrated, and its compatibility and cooperation with the rest of the subsystems has been tested, for the PoCAT picosatellites developed at the UPC NanoSat Lab.Recientemente hemos podido presenciar como grandes compañías se han marcado el objetivo de lanzar flotas de cientos o incluso miles de satélites para ofrecer diferentes servicios. Esta nueva generación de satelites está marcando una clara tendencia a reducir el tamaño y coste de éstos. Sin embargo, esto también conlleva retos y restricciones cada vez más exigentes que necesitan soluciones inovadoras en el diseño de sistemas de comunicaciones de tamaño reducido y alta capacidad. El presente trabajo ofrece el proceso completo desde el diseño, pasando por la implemetación y test, de un sistema de comunicaciones para picosatelites PocketQube. La solución propuesta se beneficia de la tecnología LoRa, y comprende tanto la parte de hardware del subsistema de comunicaciones, como el software para su configuración y funcionamiento según el protocolo definido. Finalmente, este proyecto ha sido diseñado e integrado, y se ha probado su compatibilidad y cooperación con el resto de subsistemas, para los picosatellites PoCAT desarrollados por el UPC NanoSat Lab.Recentment, hem pogut presenciar com grans companyies s'han marcat l'objectiu de llançar flotes de centenars o fins i tot milers de satèl·lits per oferir diferents serveis. Aquesta nova generació de satèl·lits està marcant una clara tendència a reduir-ne la mida i el cost. No obstant, això també comporta reptes i restriccions cada vegada més exigents que necessiten solucions innovadores en el disseny de sistemes de comunicacions de mida reduïda i alta capacitat. Aquest treball ofereix el procés complet des del disseny, passant per la implementació i test, d'un sistema de comunicacions per a picosatèl·lits PocketQube. La solució proposada es beneficia de la tecnologia LoRa, i comprèn tant la part de hardware del subsistema de comunicacions, com el software per a la seva configuració i funcionament segons el protocol definit. Finalment, aquest projecte ha estat dissenyat i integrat, i s’ha provat la seva compatibilitat i cooperació amb la resta de subsistemes, pels picosatèl·lits PoCAT desenvolupats per l'UPC NanoSat Lab

    The AlfaCrux CubeSat mission description and early results

    Get PDF
    On 1 April 2022, the AlfaCrux CubeSat was launched by the Falcon 9 Transporter-4 mission, the fourth SpaceX dedicated smallsat rideshare program mission, from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida into a Sun-synchronous orbit at 500 km. AlfaCrux is an amateur radio and educational mission to provide learning and scientific benefits in the context of small satellite missions. It is an opportunity for theoretical and practical learning about the technical management, systems design, communication, orbital mechanics, development, integration, and operation of small satellites. The AlfaCrux payload, a software-defined radio hardware, is responsible for two main services, which are a digital packet repeater and a store-and-forward system. In the ground segment, a cloud-computing-based command and control station has been developed, together with an open access online platform to access and visualize the main information of the AlfaCrux telemetry and user data and experiments. It also becomes an in-orbit database reference to be used for different studies concerned with, for instance, radio propagation, attitude reconstruction, data-driven calibration algorithms for satellite sensors, among others. In this context, this paper describes the AlfaCrux mission, its main subsystems, and the achievements obtained in the early orbit phase. Scientific and engineering assessments conducted with the spacecraft operations to tackle unexpected behaviors in the ground station and also to better understand the space environment are also presented and discussed.Fundação de Apoio à Pesquisa del Distrito Federal (FAPDF), Brasil | Ref. N/

    Communications subsystem hardware and software development for the ESTCube-2 nanosatellite

    Get PDF
    One of the most crucial components of satellites is their communications subsystem. Without a functioning radio link, it would be challenging to receive telemetry and payload data from the satellite and send telecommands to it from the ground. ESTCube-2 is a 3U CubeSat from the Estonian Student Satellite Foundation that is expectedto launch in 2022. The mission of ESTCube-2 is to test various payloads inLEO. The primary payload being the plasma brake, similar to the Electric Solar Wind Sail (E-Sail) experiment on ESTCube-1. Due to the critical nature of the satellite communications system, it is essential to start with thorough testing early to reach high reliability by the launch. The goals for this master thesis are to test ESTCube-2 communications subsystem hardware and software, and to create an engineering model, to resolve any issues discovered
    corecore