41,348 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation establishes a new visualization design process model devised to guide visualization designers in building more effective and useful visualization systems and tools. The novelty of this framework includes its flexibility for iteration, actionability for guiding visualization designers with concrete steps, concise yet methodical definitions, and connections to other visualization design models commonly used in the field of data visualization. In summary, the design activity framework breaks down the visualization design process into a series of four design activities: understand, ideate, make, and deploy. For each activity, the framework prescribes a descriptive motivation, list of design methods, and expected visualization artifacts. To elucidate the framework, two case studies for visualization design illustrate these concepts, methods, and artifacts in real-world projects in the field of cybersecurity. For example, these projects employ user-centered design methods, such as personas and data sketches, which emphasize our teams' motivations and visualization artifacts with respect to the design activity framework. These case studies also serve as examples for novice visualization designers, and we hypothesized that the framework could serve as a pedagogical tool for teaching and guiding novices through their own design process to create a visualization tool. To externally evaluate the efficacy of this framework, we created worksheets for each design activity, outlining a series of concrete, tangible steps for novices. In order to validate the design worksheets, we conducted 13 student observations over the course of two months, received 32 online survey responses, and performed a qualitative analysis of 11 in-depth interviews. Students found the worksheets both useful and effective for framing the visualization design process. Next, by applying the design activity framework to technique-driven and evaluation-based research projects, we brainstormed possible extensions to the design model. Lastly, we examined implications of the design activity framework and present future work in this space. The visualization community is challenged to consider how to more effectively describe, capture, and communicate the complex, iterative nature of data visualization design throughout research, design, development, and deployment of visualization systems and tools

    Software architectural support for tangible user interfaces in distributed, heterogeneous computing environments

    Get PDF
    This research focuses on tools that support the development of tangible interaction-based applications for distributed computing environments. Applications built with these tools are capable of utilizing heterogeneous resources for tangible interaction and can be reconfigured for different contexts with minimal code changes. Current trends in computing, especially in areas such as computational science, scientific visualization and computer supported collaborative work, foreshadow increasing complexity, distribution and remoteness of computation and data. These trends imply that tangible interface developers must address concerns of both tangible interaction design and networked distributed computing. In this dissertation, we present a software architecture that supports separation of these concerns. Additionally, a tangibles-based software development toolkit based on this architecture is presented that enables the logic of elements within a tangible user interface to be mapped to configurations that vary in the number, type and location of resources within a given tangibles-based system

    Immersive design of DMA molecules with a tangible interface

    Get PDF
    This work presents an experimental immersive interface for designing DNA components for application in nanotechnology. While much research has been done on immersive visualization, this is one of the first systems to apply advanced interface techniques to a scientific design problem. This system uses tangible 3D input devices (tongs, a raygun, and a multipurpose handle tool) to create and edit a purely digital representation of DNA. The tangible controllers are associated with functions (not data) while a virtual display is used to render the model. This interface was built in collaboration with a research group investigating the design of DNA tiles. A user study shows that scientists find the immersive interface more satisfying than a 2D interface due to the enhanced understanding gained by directly interacting with molecules in 3D space

    Display blocks: cubic displays for multi-perspective visualization

    Get PDF
    We propose the design, implementation and evaluation of a set of tangible cubic displays. This novel approach to display technology consists of arranging six organic light emitting diode screens in a cubic form factor. We explore the possibilities that this type of display holds for data visualization, manipulation and exploration. We are especially interested in exploring how the physicality of the screen can be perceived as a cue to better interpret its contents. To this end, we propose a series of applications that leverage the affordances of this technology.MIT Media Lab Consortiu

    Quantifying, Modeling and Managing How People Interact with Visualizations on the Web

    Get PDF
    The growing number of interactive visualizations on the web has made it possible for the general public to access data and insights that were once only available to domain experts. At the same time, this rise has yielded new challenges for visualization creators, who must now understand and engage a growing and diverse audience. To bridge this gap between creators and audiences, we explore and evaluate components of a design-feedback loop that would enable visualization creators to better accommodate their audiences as they explore the visualizations. In this dissertation, we approach this goal by quantifying, modeling and creating tools that manage people’s open-ended explorations of visualizations on the web. In particular, we: 1. Quantify the effects of design alternatives on people’s interaction patterns in visualizations. We define and evaluate two techniques: HindSight (encoding a user’s interaction history) and text-based search, where controlled experiments suggest that design details can significantly modulate the interaction patterns we observe from participants using a given visualization. 2. Develop new metrics that characterize facets of people’s exploration processes. Specifically, we derive expressive metrics describing interaction patterns such as exploration uniqueness, and use Bayesian inference to model distributional effects on interaction behavior. Our results show that these metrics capture novel patterns in people’s interactions with visualizations. 3. Create tools that manage and analyze an audience’s interaction data for a given visualization. We develop a prototype tool, ReVisIt, that visualizes an audience’s interactions with a given visualization. Through an interview study with visualization creators, we found that ReVisIt make creators aware of individual and overall trends in their audiences’ interaction patterns. By establishing some of the core elements of a design-feedback loop for visualization creators, the results in this research may have a tangible impact on the future of publishing interactive visualizations on the web. Equipped with techniques, metrics, and tools that realize an initial feedback loop, creators are better able to understand the behavior and user needs, and thus create visualizations that make data and insights more accessible to the diverse audiences on the web

    Citizen engagement through tangible data representation

    Get PDF
    We begin with the premise that data literacy is a fundamental facet of citizen education in this information age, and that an engaged citizenry in a democracy not only requires access to data, but also the capacity to manipulate and examine the data from multiple perspectives. The visualization of data elucidates trends and patterns in the phenomena that the data represents, and opens accessibility to understanding complicated human and natural processes represented by data sets. Research indicates that interacting with a visualization amplifies cognition and analysis. A single visualization may show only one facet of the data. To examine the data from multiple perspectives, engaged citizens need to be able to construct their own visualizations from a data set. Many tools for data visualization have responded to this need, allowing non-data experts to manipulate and gain insights into their data, but most of these tools are restricted to the computer screen, keyboard, and mouse. Cognition and analysis may be strengthened even more through embodied interaction with data. We present here the rationale for the design of a tool that allows users to probe a data set, through interactions with graspable (tangible) three-dimensional objects, rather than through a keyboard and mouse interaction. We argue that the use of tangibles facilitates understanding abstract concepts, and facilitates many concrete learning scenarios. Another advantage of using tangibles over screen-based tools is that they foster collaboration, which can promote a productive working and learning environment. We speculate that collaborative data exploration can be a productive educational activity for citizens in their communities and in the classroom, and we suggest our tool as a means to do this

    Beyond visualization : designing interfaces to contextualize geospatial data

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 71-74).The growing sensor data collections about our environment have the potential to drastically change our perception of the fragile world we live in. To make sense of such data, we commonly use visualization techniques, enabling public discourse and analysis. This thesis describes the design and implementation of a series of interactive systems that integrate geospatial sensor data visualization and terrain models with various user interface modalities in an educational context to support data analysis and knowledge building using part-digital, part-physical rendering. The main contribution of this thesis is a concrete application scenario and initial prototype of a "Designed Environment" where we can explore the relationship between the surface of Japan's islands, the tension that originates in the fault lines along the seafloor beneath its east coast, and the resulting natural disasters. The system is able to import geospatial data from a multitude of sources on the "Spatial Web", bringing us one step closer to a tangible "dashboard of the Earth."Samuel Luescher.S.M

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario

    Mapping Tasks to Interactions for Graph Exploration and Graph Editing on Interactive Surfaces

    Full text link
    Graph exploration and editing are still mostly considered independently and systems to work with are not designed for todays interactive surfaces like smartphones, tablets or tabletops. When developing a system for those modern devices that supports both graph exploration and graph editing, it is necessary to 1) identify what basic tasks need to be supported, 2) what interactions can be used, and 3) how to map these tasks and interactions. This technical report provides a list of basic interaction tasks for graph exploration and editing as a result of an extensive system review. Moreover, different interaction modalities of interactive surfaces are reviewed according to their interaction vocabulary and further degrees of freedom that can be used to make interactions distinguishable are discussed. Beyond the scope of graph exploration and editing, we provide an approach for finding and evaluating a mapping from tasks to interactions, that is generally applicable. Thus, this work acts as a guideline for developing a system for graph exploration and editing that is specifically designed for interactive surfaces.Comment: 21 pages, minor corrections (typos etc.
    • …
    corecore