9,089 research outputs found

    Autonomous service composition in symbiotic networks

    Get PDF
    Part 2: PhD Workshop: Autonomic Network and Service ManagementInternational audienceTo cope with the ever-growing number of wired and wireless networks, we introduce the notion of so-called symbiotic networks. These networks seamlessly operate across layers and over network boundaries, resulting in improved scalability, dependability, and energy efficiency. This particular Ph.D. research focuses on software services operating in such symbiotic networks. When two or more networks merge, the services provided on them may be combined into a service composition that is much more than the sum of its parts. Driven by two distinct use cases, we aim to enable fully autonomous service composition and resource provisioning. For the first use case, an in-building over-the-top service platform, we describe a software architecture and a set of generic resource provisioning algorithms. The second use case, which focuses on wireless body area networks, will allow us to expand our research domain into highly dynamic symbiotic network environments, where services appear and disappear more frequently

    Cross-network cooperation paradigms supporting co-located heterogeneous wireless networks

    Get PDF

    Design of an autonomous software platform for future symbiotic service management

    Get PDF
    Nowadays, public as well as private communication infrastructures are all contending for the same limited amount of bandwidth. To optimally share network resources, symbiotic networks have been proposed, which cross logical and physical boundaries to improve the reliability, scalability, and energy efficiency of the network as a whole as well as its constituents. This paper focuses on software services in such symbiotic networks. We propose a platform for the intelligent composition of services provided by symbiotically connected parties, resulting in novel cooperation opportunities. The platform harvests Semantic Web technology to describe services in a highly expressive manner, and constructs service compositions using SeCoA, our tunable best-first search algorithm. The resulting compositions are then enacted via CaPI, a reconfigurable middleware infrastructure. By means of an illustrative scenario, we provide further insight into the platform's functioning

    An LSPI based reinforcement learning approach to enable network cooperation in cognitive wireless sensor networks

    Get PDF
    The number of wirelessly communicating devices increases every day, along with the number of communication standards and technologies that they use to exchange data. A relatively new form of research is trying to find a way to make all these co-located devices not only capable of detecting each other's presence, but to go one step further - to make them cooperate. One recently proposed way to tackle this problem is to engage into cooperation by activating 'network services' (such as internet sharing, interference avoidance, etc.) that offer benefits for other co-located networks. This approach reduces the problem to the following research topic: how to determine which network services would be beneficial for all the cooperating networks. In this paper we analyze and propose a conceptual solution for this problem using the reinforcement learning technique known as the Least Square Policy Iteration (LSPI). The proposes solution uses a self-learning entity that negotiates between different independent and co-located networks. First, the reasoning entity uses self-learning techniques to determine which service configuration should be used to optimize the network performance of each single network. Afterwards, this performance is used as a reference point and LSPI is used to deduce if cooperating with other co-located networks can lead to even further performance improvements

    A New Taxonomy for Symbiotic EM Sensors

    Full text link
    It is clear that the EM spectrum is now rapidly reaching saturation, especially for frequencies below 10~GHz. Governments, who influence the regulatory authorities around the world, have resorted to auctioning the use of spectrum, in a sense to gauge the importance of a particular user. Billions of USD are being paid for modest bandwidths. The earth observation, astronomy and similar science driven communities cannot compete financially with such a pressure system, so this is where governments have to step in and assess /regulate the situation. It has been a pleasure to see a situation where the communications and broadcast communities have come together to formulate sharing of an important part of the spectrum (roughly, 50 MHz to 800 MHz) in an IEEE standard, IEEE802.22. This standard (known as the "TV White Space Network" (built on lower level standards) shows a way that fixed and mobile users can collaborate in geographically widespread regions, using cognitive radio and geographic databases of users. This White Space (WS) standard is well described in the literature and is not the major topic of this short paper. We wish to extend the idea of the WS concept to include the idea of EM sensors (such as Radar) adopting this approach to spectrum sharing, providing a quantum leap in access to spectrum. We postulate that networks of sensors, using the tools developed by the WS community, can replace and enhance our present set of EM sensors. We first define what Networks of Sensors entail (with some history), and then go on to define, based on a Taxonomy of Symbiosis defined by de Bary\cite{symb}, how these sensors and other users (especially communications) can co-exist. This new taxonomy is important for understanding, and should replace somewhat outdated terminologies from the radar world.Comment: 4 pages, 1 Figur

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie
    • …
    corecore