9,094 research outputs found

    A biologically inspired architecture for an autonomous and social robot

    Get PDF
    Lately, lots of effort has been put into the construction of robots able to live among humans. This fact has favored the development of personal or social robots, which are expected to behave in a natural way. This implies that these robots could meet certain requirements, for example, to be able to decide their own actions (autonomy), to be able to make deliberative plans (reasoning), or to be able to have an emotional behavior in order to facilitate human-robot interaction. In this paper, the authors present a bioinspired control architecture for an autonomous and social robot, which tries to accomplish some of these features. In order to develop this new architecture, authors have used as a base a prior hybrid control architecture (AD) that is also biologically inspired. Nevertheless, in the later, the task to be accomplished at each moment is determined by a fix sequence processed by the Main Sequencer. Therefore, the main sequencer of the architecture coordinates the previously programmed sequence of skills that must be executed. In the new architecture, the main sequencer is substituted by a decision making system based on drives, motivations, emotions, and self-learning, which decides the proper action at every moment according to robot's state. Consequently, the robot improves its autonomy since the added decision making system will determine the goal and consequently the skills to be executed. A basic version of this new architecture has been implemented on a real robotic platform. Some experiments are shown at the end of the paper.This work has been supported by the Spanish Government through the project called “Peer to Peer Robot-Human Interaction” (R2H), of MEC (Ministry of Science and Education), the project “A new approach to social robotics” (AROS), of MICINN (Ministry of Science and Innovation), the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid

    A systematic literature review of decision-making and control systems for autonomous and social robots

    Get PDF
    In the last years, considerable research has been carried out to develop robots that can improve our quality of life during tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades. These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted to action selection, an analysis not provided in similar reviews of behavioural models for autonomous and social robots. Finally, we present the future directions that these systems can take in the future.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación. This publication is part of the R&D&I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Muecas: a multi-sensor robotic head for affective human robot interaction and imitation

    Get PDF
    Este artículo presenta una cabeza robótica humanoide multi-sensor para la interacción del robot humano. El diseño de la cabeza robótica, Muecas, se basa en la investigación en curso sobre los mecanismos de percepción e imitación de las expresiones y emociones humanas. Estos mecanismos permiten la interacción directa entre el robot y su compañero humano a través de las diferentes modalidades del lenguaje natural: habla, lenguaje corporal y expresiones faciales. La cabeza robótica tiene 12 grados de libertad, en una configuración de tipo humano, incluyendo ojos, cejas, boca y cuello, y ha sido diseñada y construida totalmente por IADeX (Ingeniería, Automatización y Diseño de Extremadura) y RoboLab. Se proporciona una descripción detallada de su cinemática junto con el diseño de los controladores más complejos. Muecas puede ser controlado directamente por FACS (Sistema de Codificación de Acción Facial), el estándar de facto para reconocimiento y síntesis de expresión facial. Esta característica facilita su uso por parte de plataformas de terceros y fomenta el desarrollo de la imitación y de los sistemas basados en objetivos. Los sistemas de imitación aprenden del usuario, mientras que los basados en objetivos utilizan técnicas de planificación para conducir al usuario hacia un estado final deseado. Para mostrar la flexibilidad y fiabilidad de la cabeza robótica, se presenta una arquitectura de software capaz de detectar, reconocer, clasificar y generar expresiones faciales en tiempo real utilizando FACS. Este sistema se ha implementado utilizando la estructura robótica, RoboComp, que proporciona acceso independiente al hardware a los sensores en la cabeza. Finalmente, se presentan resultados experimentales que muestran el funcionamiento en tiempo real de todo el sistema, incluyendo el reconocimiento y la imitación de las expresiones faciales humanas.This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.Trabajo financiado por: Ministerio de Ciencia e Innovación. Proyecto TIN2012-38079-C03-1 Gobierno de Extremadura. Proyecto GR10144peerReviewe

    Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task

    Get PDF
    Current approaches do not allow robots to execute a task and simultaneously convey emotions to users using their body motions. This paper explores the capabilities of the Jacobian null space of a humanoid robot to convey emotions. A task priority formulation has been implemented in a Pepper robot which allows the specification of a primary task (waving gesture, transportation of an object, etc.) and exploits the kinematic redundancy of the robot to convey emotions to humans as a lower priority task. The emotions, defined by Mehrabian as points in the pleasure–arousal–dominance space, generate intermediate motion features (jerkiness, activity and gaze) that carry the emotional information. A map from this features to the joints of the robot is presented. A user study has been conducted in which emotional motions have been shown to 30 participants. The results show that happiness and sadness are very well conveyed to the user, calm is moderately well conveyed, and fear is not well conveyed. An analysis on the dependencies between the motion features and the emotions perceived by the participants shows that activity correlates positively with arousal, jerkiness is not perceived by the user, and gaze conveys dominance when activity is low. The results indicate a strong influence of the most energetic motions of the emotional task and point out new directions for further research. Overall, the results show that the null space approach can be regarded as a promising mean to convey emotions as a lower priority task.Postprint (author's final draft
    corecore