297 research outputs found

    Towards Psychometrics-based Friend Recommendations in Social Networking Services

    Full text link
    Two of the defining elements of Social Networking Services are the social profile, containing information about the user, and the social graph, containing information about the connections between users. Social Networking Services are used to connect to known people as well as to discover new contacts. Current friend recommendation mechanisms typically utilize the social graph. In this paper, we argue that psychometrics, the field of measuring personality traits, can help make meaningful friend recommendations based on an extended social profile containing collected smartphone sensor data. This will support the development of highly distributed Social Networking Services without central knowledge of the social graph.Comment: Accepted for publication at the 2017 International Conference on AI & Mobile Services (IEEE AIMS

    Interacting with Physical World in E-Commerce

    Get PDF
    The main goal of this final project is to conceptualise the interaction with the physical world with e-commerce. The aim is to build a digital service using different technologies and to prove how simple and easy it can be to collect data from a user for commercial proposes. Since the Internet of Things is among us, collecting data from a person has become commonplace. The question is, how can we get better and trustable data? After considering many technologies, the service was built using Android, Firebase backend/Database, and Wordpress. The service tracks beacons using Bluetooth and location, saving user’s data to analyse their behaviour in a shop and what the possible interests are. In this way, companies can target specific offers to their customers. The service is now fully operational and it is a Proof of concept with a very simple UI, in both mobile side and web shop side

    A Noticeboard application using context aware services

    Get PDF
    Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Mobile Telecommunication and Innovation at (MSc.MTI) at Strathmore UniversityThe dissemination of information on campuses using noticeboards is both inefficient and ineffective due to the static, unreliable and limiting nature of the boards. This implies that people who need to post information for consumption by the public are constrained in terms of reach, poor feedback mechanisms and a general lack of security. Posts can be tampered with by malicious people or even removed by competitors. Due to their fixed nature, noticeboards also do not cater for context, meaning that a lot of posts are consumed outside of their actionable spaces, meaning that people might never get a chance to act on them. There is therefore a need for a smart noticeboard system using the power of context aware services that allows for notices to be sent directly to user’s devices only when they are in the correct context. The aim of this research is to develop a noticeboard application that uses the power of context aware services. With such a solution, students are able to receive notices through an application when they are in the correct and most effective context and be in a better position to react or act on them accordingly. They are also able to save notifications on their mobile devices for later use or sharing. The solution therefore supports the communications departments by providing an easy, paperless way to setup notices and to track interactions with each post. The proposed system is developed and tested on the Android platform coupled with an analytical backend for post manipulation and presenting summaries analytical data for the communication department. Object Oriented Analysis and Agile development methodologies were applied to develop a robust and dynamic, context aware noticeboard system. The final prototype was tested to ensure that the requirements were met by the developer and the potential users. Tests included functional testing and usability testing

    Survey and Analysis of Android Authentication Using App Locker

    Full text link
    Android Smart phones have gained immense popularity over the years and is undoubtedly more popular than other operating system phones. Following the similar lines android wear was introduced. Steadily android wear is making its way into our daily lives. It helps keep track of the sleep you have, helps you reach fitness goals, keeps track of phone and helps users have easy authentication. Due to the usage of smart lock which enables phone to be unlocked as long as connected to the android wear, this leads to almost no security on both the ends as android wear before Android 5.0 has no lock. We aim to produce the existing authentication methods in android phones and wear and the threats that plague both kinds of devices. As authentication is one of the major building blocks of security, through research we aim at designing a system for android phones which will be able to protect the sensitive data on devices which will be at risk through smart lock using encryption techniques. In this proposed system, the user would be able to decide which applications are needed to be secured when he is using smart lock. This application will enable lock for those user chosen applications as soon as the smart phone device is connected to android wear and similarly disables the lock when connection is disabled between the devices and communication between devices is made secure using encryption algorithms. This application does not interfere with easy phone authentication which users demand but it makes sure data is protected and users are authenticated with the help of multiple authentication layering

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    Advancing the objective measurement of physical activity and sedentary behaviour context

    Get PDF
    Objective data from national surveillance programmes show that, on average, individuals accumulate high amounts of sedentary time per day and only a small minority of adults achieve physical activity guidelines. One potential explanation for the failure of interventions to increase population levels of physical activity or decrease sedentary time is that research to date has been unable to identify the specific behavioural levers in specific contexts needed to change behaviour. Novel technology is emerging with the potential to elucidate these specific behavioural contexts and thus identify these specific behavioural levers. Therefore the aims of this four study thesis were to identify novel technologies capable of measuring the behavioural context, to evaluate and validate the most promising technology and to then pilot this technology to assess the behavioural context of older adults, shown by surveillance programmes to be the least physically active and most sedentary age group. Study one Purpose: To identify, via a systematic review, technologies which have been used or could be used to measure the location of physical activity or sedentary behaviour. Methods: Four electronic databases were searched using key terms built around behaviour, technology and location. To be eligible for inclusion papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed from the inception of the database up to 04/02/2015. Searches were also performed using three internet search engines. Specialised software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results: 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras and Radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems and 21 wearable cameras. Conclusion: The addition of location information to existing measures of physical activity and sedentary behaviour will provide important behavioural information. Study Two Purpose: This study investigated the Actigraph proximity feature across three experiments. The aim of Experiment One was to assess the basic characteristics of the Actigraph RSSI signal across a range of straight line distances. Experiment Two aimed to assess the level of receiver device signal detection in a single room under unobstructed conditions, when various obstructions are introduced and the impacts these obstructions have on the intra and inter unit variability of the RSSI signal. Finally, Experiment Three aimed to assess signal contamination across multiple rooms (i.e. one beacon being detected in multiple rooms). Methods: Across all experiments, the receiver(s) collected data at 10 second epochs, the highest resolution possible. In Experiment One two devices, one receiver and one beacon, were placed opposite each other at 10cm increments for one minute at each distance. The RSSI-distance relationship was then visually assessed for linearity. In Experiment Two, a test room was demarcated into 0.5 x 0.5 m grids with receivers simultaneously placed in each demarcated grid. This process was then repeated under wood, metal and human obstruction conditions. Descriptive tallies were used to assess the signal detection achieved for each receiver from each beacon in each grid. Mean RSSI signal was calculated for each condition alongside intra and inter-unit standard deviation, coefficient of variation and standard error of the measurement. In Experiment Three, a test apartment was used with three beacons placed across two rooms. The researcher then completed simulated conditions for 10 minutes each across the two rooms. The percentage of epochs where a signal was detected from each of the three beacons across each test condition was then calculated. Results: In Experiment One, the relationship between RSSI and distance was found to be non-linear. In Experiment Two, high signal detection was achieved in all conditions; however, there was a large degree of intra and inter-unit variability in RSSI. In Experiment Three, there was a large degree of multi-room signal contamination. Conclusion: The Actigraph proximity feature can provide a binary indicator of room level location. Study Three Purpose: To use novel technology in three small feasibility trials to ascertain where the greatest utility can be demonstrated. Methods: Feasibility Trial One assessed the concurrent validity of electrical energy monitoring and wearable cameras as measures of television viewing. Feasibility Trial Two utilised indoor location monitoring to assess where older adult care home residents accumulate their sedentary time. Lastly, Feasibility Trial Three investigated the use of proximity sensors to quantify exposure to a height adjustable desk Results: Feasibility Trial One found that on average the television is switched on for 202 minutes per day but is visible in just 90 minutes of wearable camera images with a further 52 minutes where the participant is in their living room but the television is not visible in the image. Feasibility Trial Two found that residents were highly sedentary (sitting for an average of 720 minutes per day) and spent the majority of their time in their own rooms with more time spent in communal areas in the morning than in the afternoon. Feasibility Trial Three found a discrepancy between self-reported work hours and objectively measured office dwell time. Conclusion: The feasibility trials outlined in this study show the utility of objectively measuring context to provide more detailed and refined data. Study Four Purpose: To objectively measure the context of sedentary behaviour in the most sedentary age group, older adults. Methods: 26 residents and 13 staff were recruited from two care homes. Each participant wore an Actigraph GT9X on their non-dominant wrist and a LumoBack posture sensor on their lower back for one week. The Actigraph recorded proximity every 10 seconds and acceleration at 100 Hz. LumoBack data were provided as summaries per 5 minutes. Beacon Actigraphs were placed around each care home in the resident s rooms, communal areas and corridors. Proximity and posture data were combined in 5 minute epochs with descriptive analysis of average time spent sitting in each area produced. Acceleration data were summarised into 10 second epochs and combined with proximity data to show the average count per epoch in each area of the care home. Mann-Whitney tests were performed to test for differences between care homes. Results: No significant differences were found between Care Home One and Care Home Two in the amount of time spent sitting in communal areas of the care home (301 minutes per day and 39 minutes per day respectively, U=23, p=0.057) or in the amount of time residents spent sitting in their own room (215 minutes per day and 337 minutes per day in Care Home One and Two respectively, U=32, p=0.238). In both care homes, accelerometer measured average movement increases with the number of residents in the communal area. Conclusion: The Actigraph proximity system was able to quantify the context of sedentary behaviour in older adults. This enabled the identification of levers for behaviour change which can be used to reduce sedentary time in this group. Overall conclusion: There are a large number of technologies available with the potential to measure the context of physical activity or sedentary time. The Actigraph proximity feature is one such technology. This technology is able to provide a binary measure of proximity via the detection or non-detection of Bluetooth signal: however, the variability of the signal prohibits distance estimation. The Actigraph proximity feature, in combination with a posture sensor, is able to elucidate the context of physical activity and sedentary time

    Smart Sensing Technologies for Personalised Coaching

    Get PDF
    People living in both developed and developing countries face serious health challenges related to sedentary lifestyles. It is therefore essential to find new ways to improve health so that people can live longer and can age well. With an ever-growing number of smart sensing systems developed and deployed across the globe, experts are primed to help coach people toward healthier behaviors. The increasing accountability associated with app- and device-based behavior tracking not only provides timely and personalized information and support but also gives us an incentive to set goals and to do more. This book presents some of the recent efforts made towards automatic and autonomous identification and coaching of troublesome behaviors to procure lasting, beneficial behavioral changes

    Usability and Security in Medication. Administration Applications

    Get PDF
    The traditional process of filling the medicine trays and dispensing the medicines to the patients in the hospitals is manually done by reading the printed paper medicinechart. This process can be very strenuous and error-prone, given the number of sub-tasksinvolved in the entire workflow and the dynamic nature of the work environment.Therefore, efforts are being made to digitalise the medication dispensation process byintroducing a mobile application called Smart Dosing application. The introduction ofthe Smart Dosing application into hospital workflow raises security concerns and callsfor security requirement analysis. This thesis is written as a part of the smart medication management project at EmbeddedSystems Laboratory, A˚bo Akademi University. The project aims at digitising the medicine dispensation process by integrating information from various health systems, and making them available through the Smart Dosing application. This application is intended to be used on a tablet computer which will be incorporated on the medicine tray. The smart medication management system include the medicine tray, the tablet device, and the medicine cups with the cup holders. Introducing the Smart Dosing application should not interfere with the existing process carried out by the nurses, and it should result in minimum modifications to the tray design and the workflow. The re-designing of the tray would include integrating the device running the application into the tray in a manner that the users find it convenient and make less errors while using it. The main objective of this thesis is to enhance the security of the hospital medicine dispensation process by ensuring the security of the Smart Dosing application at various levels. The methods used for writing this thesis was to analyse how the tray design, and the application user interface design can help prevent errors and what secure technology choices have to be made before starting the development of the next prototype of the Smart Dosing application. The thesis first understands the context of the use of the application, the end-users and their needs, and the errors made in everyday medication dispensation workflow by continuous discussions with the nursing researchers. The thesis then gains insight to the vulnerabilities, threats and risks of using mobile application in hospital medication dispensation process. The resulting list of security requirements was made by analysing the previously built prototype of the Smart Dosing application, continuous interactive discussions with the nursing researchers, and an exhaustive state-of-the-art study on security risks of using mobile applications in hospital context. The thesis also uses Octave Allegro method to make the readers understand the likelihood and impact of threats, and what steps should be taken to prevent or fix them. The security requirements obtained, as a result, are a starting point for the developers of the next iteration of the prototype for the Smart Dosing application.Siirretty Doriast
    corecore