489 research outputs found

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    Using Fine Grain Approaches for highly reliable Design of FPGA-based Systems in Space

    Get PDF
    Nowadays using SRAM based FPGAs in space missions is increasingly considered due to their flexibility and reprogrammability. A challenge is the devices sensitivity to radiation effects that increased with modern architectures due to smaller CMOS structures. This work proposes fault tolerance methodologies, that are based on a fine grain view to modern reconfigurable architectures. The focus is on SEU mitigation challenges in SRAM based FPGAs which can result in crucial situations

    Total ionizing dose and single event upset testing of flash based field programmable gate arrays

    Get PDF
    The effectiveness of implementing field programmable gate arrays (FPGAs) in communication, military, space and high radiation environment applications, coupled with the increased accessibility of private individuals and researchers to launch satellites, has led to an increased interest in commercial off the shelf components. The metal oxide semiconductor (MOS) structures of FPGAs however, are sensitive to radiation effects which can lead to decreased reliability of the device. In order to successfully implement a FPGA based system in a radiation environment, such as on-board a satellite, the single event upset (SEU) and total ionizing dose (TID) characteristics of the device must first be established. This research experimentally determines a research procedure which could accurately determine the SEU cross sections and TID characteristics of various mitigation techniques as well as control circuits implemented in a ProASIC3 A3P1000 FPGA. To gain an understanding of the SEU effects of the implemented circuits, the test FPGA was irradiated by a 66MeV proton beam at the iTemba LABS facility. Through means of irradiation, the SEU cross section of various communication, motor control and mitigation schemes circuits, induced by high energy proton strikes was investigated. The implementation of a full global triple modular redundancy (TMR) and a combination of TMR and a AND-OR multiplexer filter was found to most effectively mitigate SEUs in comparison to the other techniques. When comparing the communication and motor control circuits, the high frequency I2C and SPI circuits experienced a higher number of upsets when compared to a low frequency servo motor control circuit. To gain a better understanding of the absorbed dose effects, experimental TID testing was conducted by irradiating the test FPGA with a cobalt-60 (Co-60) source. An accumulated absorbed dose resulted in the fluctuation of the device supply current and operating voltages as well as resulted in output errors. The TMR and TMR filtering combination mitigation techniques again were found to be the most effective methods of mitigation

    Design techniques for xilinx virtex FPGA configuration memory scrubbers

    Get PDF
    SRAM-based FPGAs are in-field reconfigurable an unlimited number of times. This characteristic, together with their high performance and high logic density, proves to be very convenient for a number of ground and space level applications. One drawback of this technology is that it is susceptible to ionizing radiation, and this sensitivity increases with technology scaling. This is a first order concern for applications in harsh radiation environments, and starts to be a concern for high reliability ground applications. Several techniques exist for coping with radiation effects at user application. In order to be effective they need to be complemented with configuration memory scrubbing, which allows error mitigation and prevents failures due to error accumulation. Depending on the radiation environment and on the system dependability requirements, the configuration scrubber design can become more or less complex. This paper classifies and presents current and novel design methodologies and architectures for SRAM-based FPGAs, and in particular for Xilinx Virtex-4QV/5QV, configuration memory scrubbers

    Redundant Skewed Clocking of Pulse-Clocked Latches for Low Power Soft-Error Mitigation

    Get PDF
    abstract: An integrated methodology combining redundant clock tree synthesis and pulse clocked latches mitigates both single event upsets (SEU) and single event transients (SET) with reduced power consumption. This methodology helps to change the hardness of the design on the fly. This approach, with minimal additional overhead circuitry, has the ability to work in three different modes of operation depending on the speed, hardness and power consumption required by design. This was designed on 90nm low-standby power (LSP) process and utilized commercial CAD tools for testing. Spatial separation of critical nodes in the physical design of this approach mitigates multi-node charge collection (MNCC) upsets. An advanced encryption system implemented with the proposed design, compared to a previous design with non-redundant clock trees and local delay generation. The proposed approach reduces energy per operation up to 18% over an improved version of the prior approach, with negligible area impact. It can save up to 2/3rd of the power consumption and reach maximum possible frequency, when used in non-redundant mode of operation.Dissertation/ThesisMasters Thesis Electrical Engineering 201
    • …
    corecore