12,111 research outputs found

    Design of a remotely piloted vehicle for a low Reynolds number station keeping mission

    Get PDF
    Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration

    Feasibility of remotely manipulated welding in space. A step in the development of novel joining technologies

    Get PDF
    In order to establish permanent human presence in space technologies of constructing and repairing space stations and other space structures must be developed. Most construction jobs are performed on earth and the fabricated modules will then be delivered to space by the Space Shuttle. Only limited final assembly jobs, which are primarily mechanical fastening, will be performed on site in space. Such fabrication plans, however, limit the designs of these structures, because each module must fit inside the transport vehicle and must withstand launching stresses which are considerably high. Large-scale utilization of space necessitates more extensive construction work on site. Furthermore, continuous operations of space stations and other structures require maintenance and repairs of structural components as well as of tools and equipment on these space structures. Metal joining technologies, and especially high-quality welding, in space need developing

    Analytical study of electrical disconnect system for use on manned and unmanned missions

    Get PDF
    The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs

    State of the Art in Swath Bathymetry Survey Systems

    Get PDF
    In the last decade, advances in real-time computing and data storage capabilities have led to significant improvements in bathymetric survey systems and the single point echo-sounder has now been replaced by a variety of highresolution swath mapping sounding systems. This paper reviews the state of the art in the non-military swath bathymetry mapping systems. Such systems are typically multi narrow beam echo-sounders or interferometric side-looking sonars with swath width capabilities ranging from 0.75 to 7 times the water depth. The paper compares the design characteristics and the echo processing methods used in a number of these systems manufactured in Japan, Finland, Norway, the U.K., the U.S.A. and West Germany

    Risks, designs, and research for fire safety in spacecraft

    Get PDF
    Current fire protection for spacecraft relies mainly on fire prevention through the use of nonflammable materials and strict storage controls of other materials. The Shuttle also has smoke detectors and fire extinguishers, using technology similar to aircraft practices. While experience has shown that the current fire protection is adequate, future improvements in fire safety technology to meet the challenges of long duration space missions, such as the Space Station Freedom, are essential. All spacecraft fire protection systems, however, must deal with the unusual combustion characteristics and operational problems in the low gravity environment. The features of low gravity combustion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be addressed eventually to provide effective and conservative fire protection systems are discussed

    Study of tooling concepts for manufacturing operations in space Final report

    Get PDF
    Mechanical linkage device for manufacturing operations with orbital workshop

    Unmanned and uncontrolled: The commingling theory and the legality of unmanned aircraft system operations

    Get PDF
    In 2002 Australia became the first nation to promulgate certification standards for the commercial use of drones or unmanned aircraft systems (UAS). Since that time the Australian Civil Aviation Safety Authority (CASA) has played a key role both domestically and internationally through the International Civil Aviation Organization (ICAO) in assisting to develop technical guidance materials that will enable contracting states to develop UAS regulations. An arduous component of this task is the fact that all existing aircraft are capable of being unmanned. Moreover, given the unbounded nature of aircraft operations, UAS regulations necessarily require international harmonisation. But the objective of developing universal UAS standards is still far from being finalised while the accelerating pace of UAS technological development continues to challenge traditional regulatory regimes and legal systems throughout the world. This paper considers the broader legal issues associated with civilian UAS operations and their integration into unsegregated civilian airspace. The Australian UAS regulatory experience is examined with some unique constitutional limitations identified in relation to the application of the so-called ‘commingling theory’. It is contended that such limitations may render void existing UAS regulation in certain situations – many of which are related to the operation of small UAS and may have significant privacy implications. In particular this paper finds that the regulations purporting to control the operation of systems that are not capable of commingling with aircraft operating within navigable airspace are ultra vires and hence of no legal effect. In concluding this paper strongly asserts that if the commercial benefits attendant to UAS operations is to be fully realised then their risks to society must be controlled through domestic legislation that is harmonised and consistent with internationally agreed guidelines

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface
    • …
    corecore