1,163 research outputs found

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    Single Event Effects in CMOS Image Sensors

    Get PDF
    In this work, 3T Active Pixel Sensors (APS) are exposed to heavy ions (N, Ar, Kr, Xe), and Single Event Effects (SEE) are studied. Devices were fully functional during exposure, no Single Event Latch-up (SEL) or Single Event Functional Interrupt (SEFI) happened. However Single Event Transient (SET) effects happened on frames: line disturbances, and half or full circular clusters of white pixels. The collection of charges in cluster was investigated with arrays of two pixel width (7 and 10 \textmu{}m), with bulk and epitaxial substrates. This paper shows technological and design parameters involved in the transient events. It also shows that STARDUST simulation software can predict cluster obtained for bulk substrate devices. However, the discrepancies in epitaxial layer devices are large - which shows the need for an improved model

    Radiation Risks and Mitigation in Electronic Systems

    Full text link
    Electrical and electronic systems can be disturbed by radiation-induced effects. In some cases, radiation-induced effects are of a low probability and can be ignored; however, radiation effects must be considered when designing systems that have a high mean time to failure requirement, an impact on protection, and/or higher exposure to radiation. High-energy physics power systems suffer from a combination of these effects: a high mean time to failure is required, failure can impact on protection, and the proximity of systems to accelerators increases the likelihood of radiation-induced events. This paper presents the principal radiation-induced effects, and radiation environments typical to high-energy physics. It outlines a procedure for designing and validating radiation-tolerant systems using commercial off-the-shelf components. The paper ends with a worked example of radiation-tolerant power converter controls that are being developed for the Large Hadron Collider and High Luminosity-Large Hadron Collider at CERN.Comment: 19 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Redundant Skewed Clocking of Pulse-Clocked Latches for Low Power Soft-Error Mitigation

    Get PDF
    abstract: An integrated methodology combining redundant clock tree synthesis and pulse clocked latches mitigates both single event upsets (SEU) and single event transients (SET) with reduced power consumption. This methodology helps to change the hardness of the design on the fly. This approach, with minimal additional overhead circuitry, has the ability to work in three different modes of operation depending on the speed, hardness and power consumption required by design. This was designed on 90nm low-standby power (LSP) process and utilized commercial CAD tools for testing. Spatial separation of critical nodes in the physical design of this approach mitigates multi-node charge collection (MNCC) upsets. An advanced encryption system implemented with the proposed design, compared to a previous design with non-redundant clock trees and local delay generation. The proposed approach reduces energy per operation up to 18% over an improved version of the prior approach, with negligible area impact. It can save up to 2/3rd of the power consumption and reach maximum possible frequency, when used in non-redundant mode of operation.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    A 4-channel 12-bit high-voltage radiation-hardened digital-to-analog converter for low orbit satellite applications

    Get PDF
    This paper presents a circuit design and an implementation of a four-channel 12-bit digital-to-analog converter (DAC) with high-voltage operation and radiation-tolerant attribute using a specific CSMC H8312 0.5-μm Bi-CMOS technology to achieve the functionality across a wide-temperature range from -55 °C to 125 °C. In this paper, an R-2R resistor network is adopted in the DAC to provide necessary resistors matching which improves the DAC precision and linearity with both the global common centroid and local common centroid layout. Therefore, no additional, complicated digital calibration or laser-trimming are needed in this design. The experimental and measurement results show that the maximum frequency of the single-chip four-channel 12-bit R-2R ladder high-voltage radiation-tolerant DAC is 100 kHz, and the designed DAC achieves the maximum value of differential non-linearity of 0.18 LSB, and the maximum value of integral non-linearity of -0.53 LSB at 125 °C, which is close to the optimal DAC performance. The performance of the proposed DAC keeps constant over the whole temperature range from -55 °C to 125 °C. Furthermore, an enhanced radiation-hardened design has been demonstrated by utilizing a radiation chamber experimental setup. The fabricated radiation-tolerant DAC chipset occupies a die area of 7 mm x 7 mm in total including pads (core active area of 4 mm x 5 mm excluding pads) and consumes less than 525 mW, output voltage ranges from -10 to +10 V

    STAHL: A Novel Scan-Test-Aware Hardened Latch Design

    Get PDF
    As modern technology nodes become more susceptible to soft errors, many radiation hardened latch designs have been proposed. However, redundant circuitry used to tolerate soft errors in such hardened latches also reduces the test coverage of cell-internal manufacturing defects. To avoid potential test escapes that lead to soft error vulnerability and reliability issues, this paper proposes a novel Scan-Test-Aware Hardened Latch (STAHL). Simulation results show that STAHL has superior defect coverage compared to previous hardened latches while maintaining full radiation hardening in function mode.24th IEEE European Test Symposium (ETS\u2719), May 27-31, 2019, Baden-Baden, German

    Highly Reliable Quadruple-Node Upset-Tolerant D-Latch

    Get PDF
    This work was supported in part by the Spanish MCIN/AEI /10.13039/501100011033/ FEDER under Grant PID2020-117344RB-I00, and in part by the Regional Government under Grant P20_00265 and Grant P20_00633.As CMOS technology scaling pushes towards the reduction of the length of transistors, electronic circuits face numerous reliability issues, and in particular nodes of D-latches at nano-scale confront multiple-node upset errors due to their operation in harsh radiative environments. In this manuscript, a new high reliable D-latch which can tolerate quadruple-node upsets is presented. The design is based on a low-cost single event double-upset tolerant (LSEDUT) cell and a clock-gating triple-level soft-error interceptive module (CG-SIM). Due to its LSEDUT base, it can tolerate two upsets, but the combination of two LSEDUTs and the triple-level CG-SIM provides the proposed D-latch with remarkable quadruple-node upsets (QNU) tolerance. Applying LSEDUTs for designing a QNU-tolerant D-latch improves considerably its features; in particular, this approach enhances its reliability against process variations, such as threshold voltage and (W/L) transistor variability, compared to previous QNU-tolerant D-latches and double-node-upset tolerant latches. Furthermore, the proposed D-latch not only tolerates QNUs, but it also features a clear advantage in comparison with the previous clock gating-based quadruple-node-upset-tolerant (QNUTL-CG) D-latch: it can mask single event transients. Speci c gures of merit endorse the gains introduced by the new design: compared with the QNUTL-CG D-latch, the improvements of the maximum standard deviations of the gate delay, induced by threshold voltage and (W/L) transistors variability of the proposed D-latch, are 13.8% and 5.7%, respectively. Also, the proposed D-latch has 23% lesser maximum standard deviation in power consumption, resulting from threshold voltage variability, when compared to the QNUTL-CG D-latch.Spanish MCIN/AEI /10.13039/501100011033/ FEDER under Grant PID2020-117344RB-I00Regional Government under Grant P20_00265 and Grant P20_0063

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore