231 research outputs found

    Optical label-controlled transparent metro-access network interface

    Get PDF

    Investigation of code reconfigurable fibre Bragg gratings for Optical Code Division Multiple Access (OCDMA) and Optical Packet Switching (OPS) Networks

    No full text
    This thesis documents my work in the telecommunication system laboratory at the Optoelectronics Research Centre, towards the implementation of code reconfigurable OCDMA and all-optical packet switching nodes based on fibre Bragg grating (FBG) technology. My research work involves characterizing the performance of various gratings, specifically high reflectivity, short chip duration, long code sequences, multiple phase level and tunable superstructured fiber Bragg gratings (SSFBGs), by using the recently proposed Frequency-Resolved Optical Gating technique based on Electro-Absorption Modulator (EAM-FROG). This technology can obtain the complex code profile along the grating, making it a powerful method to understand the thermally-induced code-reconfigurable grating. Efforts have been made to improve the grating design to achieve better system performance. Three different types of FBGs optical encoder/decoder, e.g. conventional discrete phaseshift SSFBGs, code-reconfigurable gratings, and novel continuous phase-shift SSFBGs, have been investigated comparatively, as well as their performance in various optical coding/decoding systems. This thesis also discusses the possibility of reducing multiple access interference (MAI) using a Two-Photon Absorption (TPA) process. The advanced grating devices enable the improvement of system performance. A dynamically reconfigurable optical packet processing system and a 16-channel reconfigurable OCDMA/DWDM system with 50GHz DWDM intervals has been demonstrated.These results highlight the feasibility of FBG-based optical coding/decoding techniques, with improved system flexibility and sustainability

    Reliability-aware multi-segmented bus architecture for photonic networks-on-chip

    Get PDF
    Network-on-chip (NoC) has emerged as an enabling platform for connecting hundreds of cores on a single chip, allowing for a structured, scalable system when compared to traditional on-chip buses. However, the multi-hop wireline paths in traditional NoCs result in high latency and energy dissipation causing an overall degradation in performance, especially for increasing system size. To alleviate this problem a few radically different interconnect technologies are envisioned. One such method of interconnecting different cores in NoCs is photonic interconnects. Photonic NoCs are on-chip communications networks in which information is transmitted in the form of optical signals. Photonic interconnection is one of the leading examples of emerging technology for on-chip interconnects. Existing innovative photonic NoC architectures have improved performance and reduced energy dissipation. Most architectures use Wavelength Division Multiplexing (WDM) on the photonic waveguides to increase the data bandwidth. However they have issues relating to reliability, such as waveguide losses and adjacent channel crosstalk. These phenomena could have a crippling effect on a system, and most current architectures do not address these effects. A newly proposed topology, known as the Multiple-Segmented Bus topology, or MSB, has shown promise for solving, or at least reducing, many of the problems plaguing the design of photonic networks using a modification of a folded torus to transmit different wavelength signals simultaneously. The MSB segments the waveguides into smaller parts to limit the waveguide losses. The formal performance evaluation of this proposed architecture has not been completed. This thesis will analyze the performance of such a network when implemented as a NoC in terms of data bandwidth, energy dissipation, latency, and reliability. By analyzing and comparing performance, energy dissipations, and reliability, the MSB-based photonic NoC (MSB-PNoC) can be compared to other state-of-the-art photonic NoCs to determine the feasibility of this topology for future network-on-chip designs

    Investigation of wavelength tunable laser modules for use in future optically switched dense wavelength division multiplexed networks

    Get PDF
    This thesis investigates the use of fast wavelength tunable laser modules in future optically switched dense wavelength division multiplexed networks (DWDM). The worldwide demand for increasingly greater broadband access has thus far been satisfied by the use of DWDM networks, enabled by the development of the erbium doped amplifier. However as this demand continues to grow electronic switching at network nodes will become a limiting factor, creating a potential bandwidth mismatch between the fibre capacities and switching capacity. Optical switching has been proposed to overcome this electronic bottleneck and fully utilize the enormous bandwidth offered by fibre. Fast tunable lasers (TLs) are a key technology in this area, enabling fast wavelength switching. Experimental work involving the fast wavelength switching of sampled grating distributed Bragg reflector TL modules is presented. Spurious mode generation during wavelength tuning is shown to cause severe cross-channel interference on other data channels in a DWDM test bed. Bit error rate (BER) results demonstrate that a integrated semiconductor optical amplifier can greatly reduce system degradation caused by asynchronous switching of multiple TLs. This is achieved by optically blanking the laser output during channel transition for a period of 60 ns. Immediately after the blanking period a wavelength drift due to the TL module wavelength locking is found to cause cross channel interference and introduce an error floor >1 e-4 on the BER performance characteristic of an adjacent channel in a 12.5 GHz spaced DWDM network. This drift is characterised, using a selfheterodyne and a filter based approach – Error free performance is subsequently demonstrated by using an extended blanking period of 260 ns or by using subcarrier multiplexing transmission and phase selective demodulation before detection. A DWDM optical label switching system, utilizing 40 Gbit/s payload data with low data rate labels placed on a 40 GHz sub-carrier and using TL transmitters is presented. Channel performance is monitored on a static channel as a second data channel is tuned into an adjacent channel on a 100 GHz spaced grid. Error free performance is demonstrated only for the channel payload – Time resolved BER results in agreement with the TL wavelength drift are measured and demonstrate a detrimental influence of the drift on the sub-carrier label performance

    Investigation of performance issues affecting optical circuit and packet switched WDM networks

    Get PDF
    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching. With network elements such as reconfigurable optical add/drop multiplexers (ROADMs) and optical cross connects (OXCs) now being deployed along with the generalized multiprotocol label switching (GMPLS) control plane this represents the current state of the art in commercial networks. These networks often employ erbium doped fiber amplifiers (EDFAs) to boost the optical signal to noise ratio of the WDM channels and as channel configurations change, wavelength dependent gain variations in the EDFAs can lead to channel power divergence that can result in significant performance degradation. This issue is examined in detail using a reconfigurable wavelength division multiplexed (WDM) network testbed and results show the severe impact that channel reconfiguration can have on transmission performance. Following the slow switching work the focus shifts to one of the key enabling technologies for fast optical switching, namely the tunable laser. Tunable lasers which can switch on the nanosecond timescale will be required in the transmitters and wavelength converters of optical packet switching networks. The switching times and frequency drifts, both of commercially available lasers, and of novel devices are investigated and performance issues which can arise due to this frequency drift are examined. An optical packet switching transmitter based on a novel label switching technique and employing one of the fast tunable lasers is designed and employed in a dual channel WDM packet switching system. In depth performance evaluations of this labelling scheme and packet switching system show the detrimental impact that wavelength drift can have on such systems

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    A High Speed Hardware Scheduler for 1000-port Optical Packet Switches to Enable Scalable Data Centers

    Get PDF
    Meeting the exponential increase in the global demand for bandwidth has become a major concern for today's data centers. The scalability of any data center is defined by the maximum capacity and port count of the switching devices it employs, limited by total pin bandwidth on current electronic switch ASICs. Optical switches can provide higher capacity and port counts, and hence, can be used to transform data center scalability. We have recently demonstrated a 1000-port star-coupler based wavelength division multiplexed (WDM) and time division multiplexed (TDM) optical switch architecture offering a bandwidth of 32 Tbit/s with the use of fast wavelength-tunable transmitters and high-sensitivity coherent receivers. However, the major challenge in deploying such an optical switch to replace current electronic switches lies in designing and implementing a scalable scheduler capable of operating on packet timescales. In this paper, we present a pipelined and highly parallel electronic scheduler that configures the high-radix (1000-port) optical packet switch. The scheduler can process requests from 1000 nodes and allocate timeslots across 320 wavelength channels and 4000 wavelength-tunable transceivers within a time constraint of 1μs. Using the Opencell NanGate 45nm standard cell library, we show that the complete 1000-port parallel scheduler algorithm occupies a circuit area of 52.7mm2, 4-8x smaller than that of a high-performance switch ASIC, with a clock period of less than 8ns, enabling 138 scheduling iterations to be performed in 1μs. The performance of the scheduling algorithm is evaluated in comparison to maximal matching from graph theory and conventional software-based wavelength allocation heuristics. The parallel hardware scheduler is shown to achieve similar matching performance and network throughput while being orders of magnitude faster
    corecore