46 research outputs found

    Multilayered broadband antenna for compact embedded implantable medical devices: design and characterization

    Get PDF
    Design and characterization of a multilayered compact implantable broadband antenna for wireless biotelemetry applications is presented in this paper. The main features of this novel design are miniaturized size, structure that allows integration of electronic circuits of the implantable medical device inside the antenna, and enhanced bandwidth that mitigates possible frequency detuning caused by heterogeneity of biological tissues. Using electromagnetic simulations based on the finite-difference timedomain method, the antenna geometry was optimized to operate in the 401-406 MHz Medical Device Radio communications service band. The proposed design was simulated implanted in a muscle tissue cuboid phantom and implanted in the arm, head, and chest of a high-resolution whole-body anatomical numerical model of an adult human male. The antenna was fabricated using low-temperature co-fired ceramic technology. Measurements validated simulation results for the antenna implanted in muscle tissue cuboid phantom. The proposed compact antenna, with dimensions of 14 mm × 16 mm × 2 mm, presented a −10 dB bandwidth of 103 MHz and 92 MHz for simulations and measurements, respectively. The proposed antenna allows integration of electronic circuit up to 10 mm × 10 mm × 0.5 mm. Specific absorption rate distributions, antenna input power, radiation pattern and the transmission channel between the proposed antenna and a half-wavelength dipole were evaluated

    A Dual-Band Compact Integrated Rectenna for Implantable Medical Devices

    Get PDF
    This work describes a dual band compact fully integrated rectenna circuit for implantable medical devices. The implantable rectenna circuit consists of tunnel diode 10×10µm2 QW-ASPAT (Quantum Well Asymmetric Spacer Tunnel Layer diode) was used as the rectifier due to its temperature insensitivity and non-linearity compared with conventional SBD diodes. A miniaturized dual band implantable folded dipole antenna with multiple L-shaped conducting sections for operation in the WMTS band is 1.5GHz and ISM band of 5.8GHz. High dielectric constant material Gallium Arsenide (εr=12.94) and folded geometry helps to design compact antennas with a small footprint of 2.84mm3 (4.5×1×0.63) mm3. Four-layer human tissue model was used, where the antenna was implanted in the skin model at depth of 2mm. The 10-dB impedance bandwidths of the proposed compact antenna at 1.5GHz and 5.8GHz are 227MHz (1.4-1.63GHz) with S11 is -22.6dB and 540MHz (5.47-6.02GHz) with S11 is -23.1dB, whereas gains are -36.9dBi, and -24.3dBi, respectively. The output DC voltage and power of the rectenna using two stage rectifiers are twice that produced by the single stage at input RF power of 10dBm

    Design of Novel S-Shaped Quad-Band Antenna for MedRadio/WMTS/ISM Implantable Biotelemetry Applications

    Get PDF
    A novel S-shaped quad-band planar inverted-F antenna (PIFA) is proposed for implantable biotelemetry in the Medical Device Radiocommunications Service (MedRadio) band (401–406 MHz), Wireless Medical Telemetry Service (WMTS) band (1427–1432 MHz), and industrial, scientific, and medical (ISM) bands (433-434 MHz and 2.4–2.4835 GHz). The proposed antenna reveals compact dimension of 254 mm3 (10×10×2.45 mm3) and is composed of three substrates and a superstrate, which are constructed from an S-shaped radiator (layer 1) and two twin radiators of spiral structures (layer 2 and layer 3). The optimal antenna characteristics were measured in the ground pork skin, and the measured bandwidths are 150 MHz for the MedRadio and ISM bands (433 MHz), 52 MHz for the WMTS band, and 102 MHz for the ISM band (2.4 GHz), respectively. The characteristics of proposed antenna are enough to support the applications of implantable body area networks (BAN) for biotelemetry and can completely cover main available frequency bands of BAN for biotelemetry below 3 GHz
    corecore