1,114 research outputs found

    An Ultrasound Matrix Transducer for High-Frame-Rate 3-D Intra-cardiac Echocardiography

    Get PDF
    Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an application-specific integrated circuit that generates transmission signals and digitizes the received signals. To reduce the number of cables in the catheter to a feasible number, we implement subarray beamforming and digitization in receive and use a combination of time-division multiplexing and pulse amplitude modulation data transmission, achieving an 18-fold reduction. The proposed imaging scheme employs seven fan-shaped diverging transmit beams operating at a pulse repetition frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype is characterized, and its functionality is fully verified. Results: The transducer exhibits a transmit efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In receive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10 Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000 volumes/s and is intended to cover a volume of 70° × 70° × 10 cm. Conclusion: These advanced imaging capabilities have the potential to support complex interventional procedures and enable full-volumetric flow, tissue, and electromechanical wave tracking in the heart.</p

    Design and implementation of a multi-octave-band audio camera for realtime diagnosis

    Full text link
    Noise pollution investigation takes advantage of two common methods of diagnosis: measurement using a Sound Level Meter and acoustical imaging. The former enables a detailed analysis of the surrounding noise spectrum whereas the latter is rather used for source localization. Both approaches complete each other, and merging them into a unique system, working in realtime, would offer new possibilities of dynamic diagnosis. This paper describes the design of a complete system for this purpose: imaging in realtime the acoustic field at different octave bands, with a convenient device. The acoustic field is sampled in time and space using an array of MEMS microphones. This recent technology enables a compact and fully digital design of the system. However, performing realtime imaging with resource-intensive algorithm on a large amount of measured data confronts with a technical challenge. This is overcome by executing the whole process on a Graphic Processing Unit, which has recently become an attractive device for parallel computing

    The clinical utilities of multi-pinhole single photon emission computed tomography

    Get PDF
    Single photon emission computed tomography (SPECT) is an important imaging modality for various applications in nuclear medicine. The use of multi-pinhole (MPH) collimators can provide superior resolution-sensitivity trade-off when imaging small field-of-view compared to conventional parallel-hole and fan-beam collimators. Besides the very successful application in small animal imaging, there has been a resurgence of the use of MPH collimators for clinical cardiac and brain studies, as well as other small field-of-view applications. This article reviews the basic principles of MPH collimators and introduces currently available and proposed clinical MPH SPECT systems

    Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging

    Get PDF
    Echo planar imaging (EPI) is an MRI technique of particular value to neuroscience, with its use for virtually all functional MRI (fMRI) and diffusion imaging of fiber connections in the human brain. EPI generates a single 2D image in a fraction of a second; however, it requires 2–3 seconds to acquire multi-slice whole brain coverage for fMRI and even longer for diffusion imaging. Here we report on a large reduction in EPI whole brain scan time at 3 and 7 Tesla, without significantly sacrificing spatial resolution, and while gaining functional sensitivity. The multiplexed-EPI (M-EPI) pulse sequence combines two forms of multiplexing: temporal multiplexing (m) utilizing simultaneous echo refocused (SIR) EPI and spatial multiplexing (n) with multibanded RF pulses (MB) to achieve m×n images in an EPI echo train instead of the normal single image. This resulted in an unprecedented reduction in EPI scan time for whole brain fMRI performed at 3 Tesla, permitting TRs of 400 ms and 800 ms compared to a more conventional 2.5 sec TR, and 2–4 times reductions in scan time for HARDI imaging of neuronal fibertracks. The simultaneous SE refocusing of SIR imaging at 7 Tesla advantageously reduced SAR by using fewer RF refocusing pulses and by shifting fat signal out of the image plane so that fat suppression pulses were not required. In preliminary studies of resting state functional networks identified through independent component analysis, the 6-fold higher sampling rate increased the peak functional sensitivity by 60%. The novel M-EPI pulse sequence resulted in a significantly increased temporal resolution for whole brain fMRI, and as such, this new methodology can be used for studying non-stationarity in networks and generally for expanding and enriching the functional information

    Beamforming for 3D Transesophageal Echocardiography

    Get PDF
    In this thesis, we study beamforming techniques that offer opportunities for 3D transesophageal echocardiography imaging, especially to achieve higher frame rates. In 3D TEE with a matrix transducer, two main challenges are to connect a large number of elements to a standard ultrasound system and to achieve a high volume rate (>200 Hz). We develop a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming to reduce the channel count. Initially, we propose two dual stage beamforming techniques for 1D arrays to produce high-quality images with reduced channel count: one using fixed focused receive and another with a simple summation in receive (no delays). Because of their inapplicability to the prototype transducer, we propose multiline 3D ultrasound beamforming schemes that utilize the micro-beamforming capabilities. The proposed beamforming schemes use an angle-weighted combination of the neighboring overlapping sub-volumes to suppress the crossover artifacts that are typical for parallel beamforming and produce high-quality images at a high volume rate (~300 Hz). A similar beamforming scheme adapted for a newly designed prototype matrix adult TEE probe is used for in vivo 3D imaging of the heart of a healthy adult pig to produce good quality 3D images at a high frame rate. The proposed 3D beamforming scheme can easily be adapted for matrix probes with micro-beamforming capabilities to produce good quality volume images at a high volume rate, even for a very different layout of the transmit and receive arrays

    High-Speed Photoacoustic Microscopy In Vivo

    Get PDF
    The overarching goal of this research is to develop a novel photoacoustic microscopy: PAM) technology capable of high-speed, high-resolution 3D imaging in vivo. PAM combines the advantages of optical absorption contrast and ultrasonic resolution for deep imaging beyond the quasi-ballistic regime. Its high sensitivity to optical absorption enables the imaging of important physiological parameters, such as hemoglobin concentration and oxygen saturation, which closely correlate with angiogenesis and hypermetabolism--two hallmarks of cancer. To translate PAM to the clinic, both high imaging speed and high spatial resolution are desired. With high spatial resolution, PAM can detect small structural and functional changes early; whereas, high-speed image acquisition helps reduce motion artifacts, patient discomfort, cost, and potentially the risks associated with minimally invasive procedures such as endoscopy and intravascular imaging. To achieve high imaging speed, we have constructed a PAM system using a linear ultrasound array and a kHz-repetition-rate tunable laser. The system has achieved a 249-Hz B-scan rate and a 0.5-Hz 3D imaging rate: over ~6 mm × 10 mm × 3 mm), over 200 times faster than existing mechanical scanning PAM using a single ultrasonic transducer. In addition, high-speed optical-resolution photoacoustic microscopy: OR-PAM) technology has been developed, in which the spatial resolution in one or two dimension(s) is defined by the diffraction-limited optical focus. Using section illumination, the elevational resolution of the system has been improved from ~300 micron to ~28 micron, resulting in a significant improvement in the 3D image quality. Furthermore, multiple optical foci with a microlens array have been used to provide finer than 10-micron lateral resolution--enabling the system to image capillary-level microvessels in vivo--while offering a speed potentially 20 times faster than previously existing single-focus OR-PAM. Finally, potential biomedical applications of the developed technology have been demonstrated through in vivo imaging of murine sentinel lymph nodes, microcirculation dynamics, and human pulsatile dynamics. In the future, this high-speed PAM technology may be adapted for clinical imaging of diabetes-induced vascular complications or tumor angiogenesis, or miniaturized for gastrointestinal or intravascular applications

    Data preprocessing methods for robust Fourier ptychographic microscopy

    Full text link
    Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high resolution and wide field-of-view. In current FP experimental setup, the dark-field images with high-angle illuminations are easily submerged by stray light and background noise due to the low signal-to-noise ratio, thus significantly degrading the reconstruction quality and also imposing a major restriction on the synthetic numerical aperture (NA) of the FP approach. To this end, an overall and systematic data preprocessing scheme for noise removal from FP's raw dataset is provided, which involves sampling analysis as well as underexposed/overexposed treatments, then followed by the elimination of unknown stray light and suppression of inevitable background noise, especially Gaussian noise and CCD dark current in our experiments. The reported non-parametric scheme facilitates great enhancements of the FP's performance, which has been demonstrated experimentally that the benefits of noise removal by these methods far outweigh its defects of concomitant signal loss. In addition, it could be flexibly cooperated with the existing state-of-the-art algorithms, producing a stronger robustness of the FP approach in various applications.Comment: 7 pages, 8 figure
    • …
    corecore