828 research outputs found

    Multiobjective gas turbine engine controller design using genetic algorithms

    No full text
    This paper describes the use of multiobjective genetic algorithms (MOGAs) in the design of a multivariable control system for a gas turbine engine. The mechanisms employed to facilitate multiobjective search with the genetic algorithm are described with the aid of an example. It is shown that the MOGA confers a number of advantages over conventional multiobjective optimization methods by evolving a family of Pareto-optimal solutions rather than a single solution estimate. This allows the engineer to examine the trade-offs between the different design objectives and configurations during the course of an optimization. In addition, the paper demonstrates how the genetic algorithm can be used to search in both controller structure and parameter space thereby offering a potentially more general approach to optimization in controller design than traditional numerical methods. While the example in the paper deals with control system design, the approach described can be expected to be applicable to more general problems in the fields of computer aided design (CAD) and computer aided engineering (CAE

    Analytical results for the multi-objective design of model-predictive control

    Full text link
    In model-predictive control (MPC), achieving the best closed-loop performance under a given computational resource is the underlying design consideration. This paper analyzes the MPC design problem with control performance and required computational resource as competing design objectives. The proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat control performance and the computational resource separately -- often with the latter as a fixed constraint -- which requires the implementation hardware to be known a priori. The proposed approach focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon length, to produce a set of optimal choices available to the practitioner. The posed design problem is then analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds, and establish certain validated guarantees. Founded on these properties, necessary and sufficient conditions for an effective and efficient solver are presented, leading to a specialized multi-objective optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to illustrate the results of the design approach and importance of the developed conditions for an effective solver of the MOD-MPC problem

    Multiobjective evolutionary algorithms for multivariable PI controller design

    Full text link
    A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes.This work was partially supported by the FPI-2010/19 grant and the project PAID-06-11 from the Universitat Politecnica de Valencia and the projects DPI2008-02133, TIN2011-28082 and ENE2011-25900 from the Spanish Ministry of Science and Innovation.Reynoso Meza, G.; Sanchís Saez, J.; Blasco Ferragud, FX.; Herrero Durá, JM. (2012). Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Systems with Applications. 39(9):7895-7907. https://doi.org/10.1016/j.eswa.2012.01.111S7895790739

    Multi-objectives model predictive control of multivariable systems

    Get PDF
    In this thesis, MOO [Multi-Objective Optimization] design for Model Predictive Control (MPC) and Proportional Integral (PI) control are investigated for a multivariable process

    Predictive control of an olive oil mill with multi-objective prioritization

    Get PDF
    INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL. WORLD CONGRESS (15.2002.BARCELONA)This paper presents a multi-objective controller applied to an olive oil mill. The practical experience using a Generalized Predictive Controller (GPC) in the real plant showed the necessity of including objectives, with different priorities, in the process control. The analysis demonstrates that GPC with prioritization objectives can control the process and fulfill the specified operational conditions. The results are illustrated with some simulations that compare the traditional GPC to the multi-objective one.Comisión Europea 1FD97-0836 (FEDER

    Integrated design and control of chemical processes : part I : revision and clasification

    Get PDF
    [EN] This work presents a comprehensive classification of the different methods and procedures for integrated synthesis, design and control of chemical processes, based on a wide revision of recent literature. This classification fundamentally differentiates between “projecting methods”, where controllability is monitored during the process design to predict the trade-offs between design and control, and the “integrated-optimization methods” which solve the process design and the control-systems design at once within an optimization framework. The latter are revised categorizing them according to the methods to evaluate controllability and other related properties, the scope of the design problem, the treatment of uncertainties and perturbations, and finally, the type the optimization problem formulation and the methods for its resolution.[ES] Este trabajo presenta una clasificación integral de los diferentes métodos y procedimientos para la síntesis integrada, diseño y control de procesos químicos. Esta clasificación distingue fundamentalmente entre los "métodos de proyección", donde se controla la controlabilidad durante el diseño del proceso para predecir los compromisos entre diseño y control, y los "métodos de optimización integrada" que resuelven el diseño del proceso y el diseño de los sistemas de control a la vez dentro de un marco de optimización. Estos últimos se revisan clasificándolos según los métodos para evaluar la controlabilidad y otras propiedades relacionadas, el alcance del problema de diseño, el tratamiento de las incertidumbres y las perturbaciones y, finalmente, el tipo de la formulación del problema de optimización y los métodos para su resolución

    Integrated design and control of chemical processes : Part II: an illustrative example

    Get PDF
    [EN] In this paper, the integrated design paradigm is illustrated with several examples taken from the wide range of methodologies developed in last decades and presented in the first article of this series [Part 1]. The techniques included here belong to the category of simultaneous design and control in an optimization framework, and they have been developed by the authors’ research group and applied to the simultaneous process and control system design of the activated sludge process in a wastewater treatment plant (WWTP). In the present article, new aspects and results of those methodologies are presented for further understanding. The scope of the problem considers both a fixed plant layout and the plant structure selection by defining a simple superstructure. The control strategy chosen is a linear Model Predictive Controller (MPC) with terminal penalty in order to guarantee stability. As for the evaluation of the controllability, norm based indexes have been considered, and a multi-model approach to represent the uncertainty and assure robustness. The formulation of the optimization problem can be stated either as a multiobjective one considering costs and controllability, or as monoobjective adding some controllability constraints. Several strategies for solving the optimization problem are presented, mixing stochastic and deterministic methods, and genetic algorithms.[ES] En este artículo, el paradigma de diseño integrado se ilustra con varios ejemplos tomados de la amplia gama de metodologías desarrolladas en las últimas décadas y presentadas en el primer artículo de esta serie. Las técnicas utilizadas pertenecen a la categoría de diseño y control simultáneo en un marco de optimización siendo desarrolladas por el grupo de investigación de los autores y aplicadas al diseño simultáneo de procesos y sistemas de control del proceso de lodos activados en una planta de tratamiento de aguas residuales. El alcance del problema considera tanto una disposición fija de la planta como la selección de la estructura de la planta definiendo una superestructura simple. La estrategia de control elegida es un controlador predictivo modelo lineal (MPC). En cuanto a la evaluación de la controlabilidad, se han considerado índices basados en normas, y un enfoque multi-modelo para representar la incertidumbre y asegurar robustez. La formulación del problema de optimización se puede plantear bien como un objetivo multiobjetivo que considera costos y controlabilidad, o como monoobjetivo que añade algunas restricciones de controlabilidad. Se presentan varias estrategias para resolver el problema de optimización, mezclando métodos estocásticos y determinísticos, y algoritmos genéticos

    Distributed control design for underwater vehicles

    Get PDF
    The vast majority of control applications are based on non-interacting decentralized control designs. Because of their single-loop structure, these controllers cannot suppress interactions of the system. It would be useful to tackle the undesirable effects of the interactions at the design stage. A novel model predictive control scheme based on Nash optimality is presented to achieve this goal. In this algorithm, the control problem is decomposed into that of several small-coupled mixed integer optimisation problems. The relevant computational convergence, closed-loop performance and the effect of communication failures on the closed-loop behaviour are analysed. Simulation results are presented to illustrate the effectiveness and practicality of the proposed control algorithm
    corecore